Cauchy-Schwarz ulikehten
Posted: 13/02-2006 20:43
Jeg skal verifisere at CS-ulikheten holder for u=(-2,1) og v=(1,0),
når indreproduktet <u,v> = 3u[sub]1[/sub]v[sub]1[/sub] + 2u[sub]2[/sub]v[sub]2[/sub]
CS-ulikheten sier |<u,v>| =< ||u||*||v||
|<u,v>| = d(u,v) = [rot][/rot] (u[sub]1[/sub]-v[sub]1[/sub])[sup]2[/sup] + (u[sub]2[/sub]v[sub]2[/sub])[sup]2[/sup] = [rot][/rot] 3*(-2-1)[sup]2[/sup] + 2*(1-0)[sup]2[/sup] = [rot][/rot] 29
||u||*||v|| = [rot][/rot] 3*(-2)[sup]2[/sup] + 2*0[sup]2[/sup] = [rot][/rot] 12
OK, noe har jeg gjort galt!
når indreproduktet <u,v> = 3u[sub]1[/sub]v[sub]1[/sub] + 2u[sub]2[/sub]v[sub]2[/sub]
CS-ulikheten sier |<u,v>| =< ||u||*||v||
|<u,v>| = d(u,v) = [rot][/rot] (u[sub]1[/sub]-v[sub]1[/sub])[sup]2[/sup] + (u[sub]2[/sub]v[sub]2[/sub])[sup]2[/sup] = [rot][/rot] 3*(-2-1)[sup]2[/sup] + 2*(1-0)[sup]2[/sup] = [rot][/rot] 29
||u||*||v|| = [rot][/rot] 3*(-2)[sup]2[/sup] + 2*0[sup]2[/sup] = [rot][/rot] 12
OK, noe har jeg gjort galt!