eksponentiallikning

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

eksponentiallikning

Innlegg ostepop » 17/04-2019 13:16

Hei

Lurer på hvorfor man ikke kan løse e^x^2=5 slik e^x^2 = 5 e^2x = 5 2x*lne = ln5 x=ln5/2
ostepop offline

Re: eksponentiallikning

Innlegg Aleks855 » 17/04-2019 13:28

$e^{x^2} \neq e^{2x}$, så det faller sammen der.

Du tenker riktig videre med logaritmer, men det vil være bedre å bare bruke det fra starten her.

$e^{x^2} = 5 \ \Rightarrow \ \ln\left(e^{x^2} \right) = \ln 5 \ \Rightarrow \ldots$

Og det ser ut som du har skjønt veien videre herfra.
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 5614
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: eksponentiallikning

Innlegg ostepop » 17/04-2019 13:34

Okey

Vis det står e^2x = 5 så kan jeg gjøre det slik jeg tenkte ?
ostepop offline

Re: eksponentiallikning

Innlegg ostepop » 17/04-2019 13:37

lurer litt på hvorfor jeg ikke kan bruke a^pq = (a^p)^q på e^x^2 ?
ostepop offline

Re: eksponentiallikning

Innlegg Aleks855 » 17/04-2019 13:58

Jeg tolker e^x^2 som $e^{x^2} = e^{x\cdot x}$, mens det også kan tolkes som $\left(e^x\right)^2 = e^{2x} = e^{x+x}$.

Ifølge regnerekkefølga så løser vi indre funksjoner før ytre funksjoner, så $x^2$ tolkes for seg selv som en eksponent før vi betrakter potensen med grunntall $e$. Altså får vi e^(x^2), med $x^2$ som eksponent.
Bilde
Aleks855 offline
Rasch
Rasch
Innlegg: 5614
Registrert: 19/03-2011 15:19
Bosted: Trondheim

Re: eksponentiallikning

Innlegg ostepop » 17/04-2019 14:24

mange takk!
ostepop offline

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 29 gjester