Finn konvergensområde

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Finn konvergensområde

Innlegg Banan » 17/05-2019 20:36

Hei, sliter litt med ulikhetene, kan jeg få litt hjelp:

a) Finn konvergensområdet for den uendelige rekken x + x^(3) + x^(5) + ...


Her finner jeg at k= x^(2). Videre vet jeg at x^(2) skal ligge mellom -1 og 1 for at rekken skal konvergere, men sliter med ulikhetene


b) Finn konvergensområdet for den uendelige rekken 1 + 1/x + 1/x^(2) + 1/x^(3)

Her finner jeg at k = 1/x , men sliter igjen med ulikhetene.

Noen som kan forklare hvordan jeg skal gå fram og gi noen tips til hvordan jeg kan løse slike i framtiden?
Banan offline
Cantor
Cantor
Innlegg: 112
Registrert: 28/05-2017 14:25

Re: Finn konvergensområde

Innlegg Nebuchadnezzar » 18/05-2019 08:56

At $-1 < x^2 < 1$ er det samme som at $|x^2| < 1$ som igjen er det samme som $|x|^2 < 1$ som skjer når $|x| < 1$ (ta kvadratroten på begge sider).

På nummer to kan du gjøre det samme $|1/x| < 1$ også trikse med ulikhetene.
"Å vite hva man ikke vet er og en slags allvitenhet" - Piet Hein
https://s.ntnu.no/Integralkokeboken
Lektor - Matematikk og Fysikk
Nebuchadnezzar offline
Fibonacci
Fibonacci
Brukerens avatar
Innlegg: 5509
Registrert: 24/05-2009 13:16
Bosted: NTNU

Re: Finn konvergensområde

Innlegg Banan » 18/05-2019 11:19

Nebuchadnezzar skrev:At $-1 < x^2 < 1$ er det samme som at $|x^2| < 1$ som igjen er det samme som $|x|^2 < 1$ som skjer når $|x| < 1$ (ta kvadratroten på begge sider).

På nummer to kan du gjøre det samme $|1/x| < 1$ også trikse med ulikhetene.


Hei

Takk for at du svarer, men er veldig forvirret. Jeg skjønner ikke helt det med at x^2 skal være større enn -1 og mindre enn 1 skal være det samme som x^2 <1.

Det jeg tenkte var:

x^2 >-1 har vel ingen løsning ettersom x^(2) er alltid positivt, sant?

x^2<1 gir at x<-1 men også x<1, sant? Men igjen gir det også ingen mening.


På den andre løser jeg 1/x>-1 og 1/x< 1 og får at x>-1 og at x>1, men skjønner heller ikke om det går an.

Hvordan kommer du fram til at ulikhetene er det samme som det du sier? Jeg ser det ikke :|

Takk
Banan offline
Cantor
Cantor
Innlegg: 112
Registrert: 28/05-2017 14:25

Re: Finn konvergensområde

Innlegg Markus » 18/05-2019 15:00

Banan skrev:Jeg skjønner ikke helt det med at x^2 skal være større enn -1 og mindre enn 1 skal være det samme som x^2 <1.

Det jeg tenkte var:

x^2 >-1 har vel ingen løsning ettersom x^(2) er alltid positivt, sant?

x^2<1 gir at x<-1 men også x<1, sant? Men igjen gir det også ingen mening.

På den andre løser jeg 1/x>-1 og 1/x< 1 og får at x>-1 og at x>1, men skjønner heller ikke om det går an.

Hvordan kommer du fram til at ulikhetene er det samme som det du sier? Jeg ser det ikke :|

For at en geometrisk rekke $\sum_{n=0}^\infty ar^n$ skal konvergere må $|r|<1$. I din oppgave har vi i a) at $r=x^2$, så vi må ha $|x^2|<1$. Videre er $|a\cdot b|=|a|\cdot|b|$ for hvilke som helst tall $a,b \in \mathbb{R}$. Dermed har vi at $|x^2|=|x\cdot x|=|x|\cdot|x|=|x|^2<1$. Hvis vi tar kvadratroten på begge sider får vi $|x|<1$. Når er absoluttverdien av $x$ mindre enn 1?
Markus offline
Fermat
Fermat
Innlegg: 760
Registrert: 20/09-2016 12:48
Bosted: NTNU

Re: Finn konvergensområde

Innlegg Banan » 18/05-2019 15:19

Markus skrev:
Banan skrev:Jeg skjønner ikke helt det med at x^2 skal være større enn -1 og mindre enn 1 skal være det samme som x^2 <1.

Det jeg tenkte var:

x^2 >-1 har vel ingen løsning ettersom x^(2) er alltid positivt, sant?

x^2<1 gir at x<-1 men også x<1, sant? Men igjen gir det også ingen mening.

På den andre løser jeg 1/x>-1 og 1/x< 1 og får at x>-1 og at x>1, men skjønner heller ikke om det går an.

Hvordan kommer du fram til at ulikhetene er det samme som det du sier? Jeg ser det ikke :|

For at en geometrisk rekke $\sum_{n=0}^\infty ar^n$ skal konvergere må $|r|<1$. I din oppgave har vi i a) at $r=x^2$, så vi må ha $|x^2|<1$. Videre er $|a\cdot b|=|a|\cdot|b|$ for hvilke som helst tall $a,b \in \mathbb{R}$. Dermed har vi at $|x^2|=|x\cdot x|=|x|\cdot|x|=|x|^2<1$. Hvis vi tar kvadratroten på begge sider får vi $|x|<1$. Når er absoluttverdien av $x$ mindre enn 1?


Aldri? Betyr dette at man ikke bruker vanlig ulikhetregning? Og bruker man samme logikk for -1 < 1/x <1? Tusen takk
Banan offline
Cantor
Cantor
Innlegg: 112
Registrert: 28/05-2017 14:25

Re: Finn konvergensområde

Innlegg Kay » 18/05-2019 15:36

Hvis du tegner funksjonene [tex]f(x)=|x|[/tex] og [tex]g(x)=1[/tex] vil du fort se svaret. Ser du hva det er?

Bilde
[tex]e=\pi=3[/tex]
Kay offline
Galois
Galois
Innlegg: 553
Registrert: 13/06-2016 18:23

Re: Finn konvergensområde

Innlegg Banan » 18/05-2019 15:55

Kay skrev:Hvis du tegner funksjonene [tex]f(x)=|x|[/tex] og [tex]g(x)=1[/tex] vil du fort se svaret. Ser du hva det er?

Bilde


Ja, tror det. Har eksamen i R2 om noen dager, og sykt stresset.

Tusen takk
Banan offline
Cantor
Cantor
Innlegg: 112
Registrert: 28/05-2017 14:25

Re: Finn konvergensområde

Innlegg Banan » 18/05-2019 17:38

Kay skrev:Hvis du tegner funksjonene [tex]f(x)=|x|[/tex] og [tex]g(x)=1[/tex] vil du fort se svaret. Ser du hva det er?

Bilde


Ja, tror det. Har eksamen i R2 om noen dager, og sykt stresset.

Tusen takk
Banan offline
Cantor
Cantor
Innlegg: 112
Registrert: 28/05-2017 14:25

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 50 gjester