Page 1 of 1

Matteoppgave 1T

Posted: 09/02-2020 14:59
by Mattematikkk
Hei! Trenger hjelp med en matteoppgave. Har løst den i geogebra, men lurte på hvordan jeg kan løse den for hånd:)

For hvilken verdi av a har linja y=2x+a bare ett punkt til felles med parabelen f(x)=x^2-4x+3?

Håper noen kan hjelpe meg med dette!

Re: Matteoppgave 1T

Posted: 09/02-2020 15:28
by DennisChristensen
Mattematikkk wrote:Hei! Trenger hjelp med en matteoppgave. Har løst den i geogebra, men lurte på hvordan jeg kan løse den for hånd:)

For hvilken verdi av a har linja y=2x+a bare ett punkt til felles med parabelen f(x)=x^2-4x+3?

Håper noen kan hjelpe meg med dette!
Vi ønsker å finne $a$ slik at likningen $2x + a = x^2 - 4x + 3$ bare har én løsning. Dette er en annengradslikning som kan løses med $abc$-formelen:
$$\begin{align*}
x^2 - 6x + (3-a) & = 0 \\
x & = \frac{6 \pm \sqrt{(-6)^2 - 4(3-a)}}2 \\
\end{align*}$$
Uttrykket $D = (-6)^2 - 4(3-a)$ kalles diskriminanten til likningen og vi observerer følgende:
  • Dersom $D > 0$ har likningen to forskjellige løsninger,
    Dersom $D=0$ har likningen én repetert løsning,
    Dersom $D<0$ har likningen ingen reelle løsninger.
Vi ønsker altså at $D=0$:
$$\begin{align*}
(-6)^2 - 4(3-a) & = 0 \\
4a & = -24 \\
a & = -6.
\end{align*}$$