Naturlig logaritmelikning
Posted: 14/03-2006 18:34
Likningen
e[sup]2x[/sup] - 3e[sup]x[/sup] + 2 = 0
har 2 svar : x=ln2 og x=0
Det jeg lurer på er hvordan man ved regning kommer fram til svaret x=0. Det er selvsagt ved å se på likningen, men hvordan vise?
Måten jeg fant fram til x=ln2 var følgende :
e[sup]2x[/sup] - 3e[sup]x[/sup] + 2 = 0
ln e[sup]2x[/sup] - 3 ln e[sup]x[/sup] = - ln 2
2x - 3x = - ln 2
x = ln 2
Igjen, hvordan viser jeg det andre svaret?
e[sup]2x[/sup] - 3e[sup]x[/sup] + 2 = 0
har 2 svar : x=ln2 og x=0
Det jeg lurer på er hvordan man ved regning kommer fram til svaret x=0. Det er selvsagt ved å se på likningen, men hvordan vise?
Måten jeg fant fram til x=ln2 var følgende :
e[sup]2x[/sup] - 3e[sup]x[/sup] + 2 = 0
ln e[sup]2x[/sup] - 3 ln e[sup]x[/sup] = - ln 2
2x - 3x = - ln 2
x = ln 2
Igjen, hvordan viser jeg det andre svaret?