Integrasjon - hva gjør jeg nå?
Posted: 23/03-2006 19:27
[tex]\int_{-1}^{\:1}\; \int_{-\sqrt{2-2y^2}}^{\:\,{\sqrt{2-2y^2}}} \; \int_0^{\:{1-\frac{x}{2}-\frac{y}{2}}} \; dz \:dx \: dy =[/tex]
[tex]\int_{-1}^{\:1}\; \int_{-\sqrt{2-2y^2}}^{\:\,{\sqrt{2-2y^2}}} \; {\:{1-\frac{x}{2}-\frac{y}{2}}} \:dx \: dy =[/tex]
[tex]\int_{-1}^{\:1}\; [x - \frac{1}{4}x^2 -\frac{yx}{2}]_{-\sqrt{2-2y^2}}^{\:\,{\sqrt{2-2y^2}} \: dy =[/tex]
[tex]\int_{-1}^{\:1}\; 2\sqrt{2-2y^2} - y*\sqrt{2-2y^2} \:dy =[/tex]
y=sint dy=cost dt, nye grenser - [symbol:pi]/2 til [symbol:pi]/2
[tex]\int_{-\frac{\pi}{2}}^{\:\frac{\pi}{2}}\; 2\sqrt{2}*cost - sint*\sqrt{2}*cost*cost \:dt =[/tex]
Her stopper det for meg.
[tex]\int_{-1}^{\:1}\; \int_{-\sqrt{2-2y^2}}^{\:\,{\sqrt{2-2y^2}}} \; {\:{1-\frac{x}{2}-\frac{y}{2}}} \:dx \: dy =[/tex]
[tex]\int_{-1}^{\:1}\; [x - \frac{1}{4}x^2 -\frac{yx}{2}]_{-\sqrt{2-2y^2}}^{\:\,{\sqrt{2-2y^2}} \: dy =[/tex]
[tex]\int_{-1}^{\:1}\; 2\sqrt{2-2y^2} - y*\sqrt{2-2y^2} \:dy =[/tex]
y=sint dy=cost dt, nye grenser - [symbol:pi]/2 til [symbol:pi]/2
[tex]\int_{-\frac{\pi}{2}}^{\:\frac{\pi}{2}}\; 2\sqrt{2}*cost - sint*\sqrt{2}*cost*cost \:dt =[/tex]
Her stopper det for meg.