Separable ekstensjoner og Q(tredjerot av 2)
Posted: 04/06-2006 10:57
Hei
Jeg lurer på en ting.
Bakgrunn
I min lærebok står det at:
1. Every field of characteristic zero is perfect
* Q har karakteristikk 0, så det må være perfekt. Videre sier boken:
2. A field is perfect if every finite extension is a separable extension
* Så alle endelige ekstensjoner av Q må være separable
3. A finite extension E of F is a separable extension of F if {E:F}=[E:F]
* {E:F} er antall isomorfier fra E til closuren til F som holder F fiksert.
* [E:F] er graden av det irredusible polynomet irr(A, Q)
Mitt problem
La A være x^3 - 2, la S være tredjeroten av 2, la E=Q(S) (ekstensjonen av Q som inneholder tredjeroten av 2). E er helt klart en endelig ekstensjon.
Vi ser at [E:Q] = 3, da A er irredusibelt over Q og graden til A er 3.
{E:Q} = 1, da vi bare har en isomorfi som holder Q fiksert (identitetsisomorfien som mapper S på S), siden vi ikke har noen konjugater av S for A. (Dette resultatet kommer fra konjugat isomorfi-teoremet)
Kontradiksjonen
Siden {E:Q}!=[E:Q], så er ikke E en separabel ekstensjon, noe som var garantert når Q er perfekt.
Kan noen finne sprekkene i dette her? Jeg gjør det ikke...
På forhånd takk!
Egil M.
Jeg lurer på en ting.
Bakgrunn
I min lærebok står det at:
1. Every field of characteristic zero is perfect
* Q har karakteristikk 0, så det må være perfekt. Videre sier boken:
2. A field is perfect if every finite extension is a separable extension
* Så alle endelige ekstensjoner av Q må være separable
3. A finite extension E of F is a separable extension of F if {E:F}=[E:F]
* {E:F} er antall isomorfier fra E til closuren til F som holder F fiksert.
* [E:F] er graden av det irredusible polynomet irr(A, Q)
Mitt problem
La A være x^3 - 2, la S være tredjeroten av 2, la E=Q(S) (ekstensjonen av Q som inneholder tredjeroten av 2). E er helt klart en endelig ekstensjon.
Vi ser at [E:Q] = 3, da A er irredusibelt over Q og graden til A er 3.
{E:Q} = 1, da vi bare har en isomorfi som holder Q fiksert (identitetsisomorfien som mapper S på S), siden vi ikke har noen konjugater av S for A. (Dette resultatet kommer fra konjugat isomorfi-teoremet)
Kontradiksjonen
Siden {E:Q}!=[E:Q], så er ikke E en separabel ekstensjon, noe som var garantert når Q er perfekt.
Kan noen finne sprekkene i dette her? Jeg gjør det ikke...
På forhånd takk!
Egil M.