Page 1 of 1

En tekstoppgave!

Posted: 02/10-2006 16:59
by parateam
En terningformet isblokk smelter slik at sidekantene (hver med lengde x) avtar med 0,2cm. pr. minutt. Hvor mye avtar volumet i det øyeblikket da x = 20 cm?

Re: En tekstoppgave!

Posted: 02/10-2006 18:45
by Janhaa
parateam wrote:En terningformet isblokk smelter slik at sidekantene (hver med lengde x) avtar med 0,2cm. pr. minutt. Hvor mye avtar volumet i det øyeblikket da x = 20 cm?
-------------------------------------------------------------------------------

V = X[sup]3[/sup] (cm[sup]3[/sup])

V ' = 3X[sup]2[/sup]*X' = 3*(20)[sup]2[/sup]*(0.2) (cm[sup]3[/sup]/min)

V ' = 240 (cm[sup]3[/sup]/min)

Egentlig er det negativt fortegn foran 240, siden isblokken smelter.
Dvs den smelter og reduseres med 240 cm[sup]3[/sup]/min

fa

Posted: 26/10-2006 09:45
by goorgoor
hva blir farten arealet øker med når radius er 4cm
ps: radius øker med 3cm/time.

arealet er da : [tex]A=4[/tex] [symbol:pi] [tex]r^2[/tex]

Re: fa

Posted: 26/10-2006 11:38
by Janhaa
goorgoor wrote:hva blir farten arealet øker med når radius er 4cm
ps: radius øker med 3cm/time.
arealet er da : [tex]A=4[/tex] [symbol:pi] [tex]r^2\;(*)[/tex]
-------------------------------------------------------------------------------

Husk:

[tex]A\;=\;[/tex][tex]A(t)\;=\;[/tex][tex]4\pi r^2(t)\;(*)[/tex]

Vel, A øker med A ` = [tex]dA\over dt[/tex]

Er bare å derivere (*):

[tex]A `[/tex][tex]\;=\;[/tex][tex]dA\over dt[/tex][tex]\;=\;8\pi r {dr\over dt}[/tex]

så er der bare å kjøre inn i formelen:

[tex]dA\over dt[/tex][tex]\;=\;8\pi \cdot 4\cdot 3\;(cm^2/t)[/tex]


[tex]dA\over dt[/tex][tex]\;=\;96\pi \;(cm^2/t)[/tex]

Re: fa

Posted: 26/10-2006 13:24
by goorgoor
farten er altså:

[tex]\;=\;96\pi \;(cm^2/t)[/tex]

Re: fa

Posted: 26/10-2006 13:31
by Janhaa
goorgoor wrote:farten er altså:

[tex]\;=\;96\pi \;(cm^2/t)[/tex]

JEPP