Page 1 of 1
derivasjon e^-x
Posted: 01/11-2006 12:46
by solhoff
har en oppgave her som lyder:
[tex]f(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}[/tex]
Jeg kan formelen for [tex]\frac{U}{V}[/tex], men jeg vet ikke hva den deriverte av [tex]e^{-x}[/tex]er..

Re: derivasjon e^-x
Posted: 01/11-2006 13:50
by Janhaa
solhoff wrote:har en oppgave her som lyder:
[tex]f(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}[/tex]
Jeg kan formelen for [tex]\frac{U}{V}[/tex], men jeg vet ikke hva den deriverte av [tex]e^{-x}[/tex]er..

[tex]{d\over dx}(e^{-x})\;=\;[/tex][tex](e^{-x})`\;=\;[/tex][tex]-e^{-x}[/tex]
Posted: 01/11-2006 16:25
by sEirik
Kan forklares slik, ved å bruke kjerneregelen:
Vi setter u til å være eksponenten:
[tex]u = -x[/tex]
[tex]e^{-x} = e^u[/tex]
Vi har egenskapen til e:
[tex](e^u)^, = e^u[/tex]
Deriverer u, [tex]u^, = -1[/tex]
Multipliserer med u'
[tex](e^{-x} )^, = e^u \cdot -1[/tex]
Setter inn for u og får
[tex](e^{-x} )^, = -e^{-x}[/tex]
Posted: 02/11-2006 09:37
by solhoff
Takk! Nå fikk jeg den til å stemme. Typisk at man har en tendens til å tenke for vanskelig.

Posted: 02/11-2006 14:54
by Magnus
Ettersom jeg har en stør kjærlighet for hyperbolske funksjoner, kan man streng tatt se at vi her er ute etter å derivere tanh(x).
[tex]\frac {d}{dx} tanh(x) = 1+tanh^2(x)[/tex]
Og vi er ferdige.