R1 2018 høst LØSNING

Fra Matematikk.net
Hopp til:navigasjon, søk

Diskusjon av denne oppgaven på matteprat

Løsningsforslag (pdf) (open source, meld fra om forbedringer eller feil her)

Løsning del 1 laget av mattepratbruker mingjun

Løsning som PDF laget av Marius Nilsen ved Bergen Private Gymnas

Løsning til del 1 som videoer laget av Lektor Håkon Raustøl

DEL 1

Oppgave 1

a)

$f(x)=x^2+2x+e^x$

$f'(x)=2x+2+e^x$

b)

$g(x)=x^2\cdot ln \, x$

$g'(x)=2x\cdot ln \, x + x^2 \cdot \frac{1}{x} = 2x\cdot ln\, x + x$

c)

$h(x)=\frac{x-1}{e^{2x+1}}$

$h'(x)=\frac{1\cdot e^{2x+1}-(x-1)\cdot 2\cdot e^{2x+1}}{(e^{2x+1})^2} = \frac{1-(2x-2)}{e^{2x+1}} = \frac{-2x+1}{e^{2x+3}}$

Oppgave 2

a)

$e^{2x}+7e^x-8=0$

Setter $u=e^x$

$u^2+7u-8=0 \\ (u+8)(u-1)=0 \\ u=-8 \vee u=1 \\ e^x=-8 \vee e^x=1 \\ x= 0$

Ikke mulig å ta ln(-8), forkaster derfor det ene svaret.

b)

$ln(x^2-5x-1)-ln(3-2x)=0 \\ ln(x^2-5x-1)=ln(3-2x) \\ x^2-5x-1 = 3-2x \\ x^2-5x+2x-1-3 = 0 \\ x^2-3x-4=0 \\ (x+1)(x-4)=0 \\ x=-1 \vee x=4$

Setter inn hvert av svarene i likningen:

$ln((-1)^2-5(-1)-1) - ln(3-2(-1)) = 0 \\ ln(5)-ln(5)=0$

$x=-1$ er en løsning.

$ln(4^2-5\cdot 4-1)-ln(3-2\cdot 4)=0 \\ ln(-5)-ln(-5)=0$

$x=4$ er ikke en løsning fordi det ikke er mulig å ta ln(-5).

Oppgave 3

Vi har vektorene $\vec{a}=[2,3]$ og $\vec{b}=[-5,3]$

a)

$2\vec{b}-3\vec{a} = 2\cdot[-5,3]-3\cdot[2,3] = [-10,6]-[6,9] = [-16,-3]$

b)

$|\vec{a}|=\sqrt{2^2+3^2} = \sqrt{13}$

$|\vec{a}|<4$ fordi $\sqrt{16}=4$, og derfor er $\sqrt{13}<4$

c)

$\vec{a}\cdot \vec{b} = |\vec{a}|\cdot |\vec{b}|\cdot cos\,\alpha \\ cos \,\alpha = \frac{ \vec{a}\cdot \vec{b} } { |\vec{a}|\cdot |\vec{b}|} \\ cos \,\alpha = \frac{[2,3]\cdot[-5,3]}{\sqrt{13}\cdot \sqrt{(-5)^2+3^2}} \\ cos \,\alpha = \frac{-10+9}{\sqrt{13}\cdot \sqrt{34}} \\ cos \,\alpha = \frac{-1}{\sqrt{13}\cdot \sqrt{34}}$

Vi har $cos\,\alpha < 0$, hvilket betyr at vinkelen mellom de $\vec{a}$ og $\vec{b}$ er stump.

Oppgave 4

Vi har $f(x)=x^3+6x^2-x-30$

a)

$f(2)=2^3+6\cdot 2^2-2-30 = 8+24-2-30 = 0$

$x=2$ er et nullpunkt, så divisjonen $f(x):(x-2)$ går opp.

b)

Utfører polynomdivisjonen:

R1 H18 del1 4b.png

Faktoriserer uttrykket:

$x^3+6x^2-x-30 = (x^2+8x+15)(x-2) = (x+5)(x+3)(x-2)$

c)

$-2\cdot f(x) \geq 0 \\ -2(x+5)(x+3)(x-2) \geq 0 $

R1 H18 del1 4c.png

$-2\cdot f(x) \geq 0$ når $x\in \langle \leftarrow, -5] \cup [-3,2]$

Oppgave 5

a)

Edelgran = E, Kvinne = K, Mann = M

$P(E) = P(E|M)\cdot P(M)+P(E|K)\cdot P(K) \\ = 0,60\cdot 0,70 + 0,40\cdot 0,30 = 0,42 + 0,12 = 0,54$

Sannsynligheten for at det første treet han selger en dag, er edelgran, er 0,54.

b)

$P(K|E) = \frac{P(K)\cdot P(E|K)}{P(E)} = \frac{0,30\cdot 0,40}{0,54} = \frac{0,12}{0,54} = \frac{12}{54} = \frac{2\cdot 6}{9\cdot 6} = \frac{2}{9}$

Sannsynligheten for at vinneren av lotteriet blir en kvinne, er $\frac{2}{9}$.

Oppgave 6

$2x^2-3x-2=x^2+x+3 \\ 2x^2-x^2-3x-x-2-3=0 \\ x^2-4x-5=0 \\ (x+1)(x-5)=0 \\ x= -1 \vee x=5 $

f er en kontinuerlig funksjon for $a=-1$ og $a=5$

Oppgave 7

Vi har $g(x)=x-2ln(x^2+3) \quad , \quad x\in \R$

a)

$g'(x)=1- ( 0\cdot ln(x^2+3) + 2 \cdot 2x \cdot \frac{1}{x^2+3} ) \\ = 1-\frac{4x}{x^2+3} = \frac{x^2+3}{x^2+3}- \frac{4x}{x^2+3} = \frac{x^2-4x+3}{x^2+3} $

b)

$g'(x)=0 \\ \frac{x^2-4x+3}{x^2+3} = 0 \\ x^2-4x+3 = 0 \\ (x-1)(x-3)=0 \\ x=1 \vee x= 3$

Ingen av disse x-verdiene gir null i nevner til $g'(x)$, og funksjonen g(x) er definert for $x\in\R$, så begge x-verdier er gyldige svar.

R1 H18 del 1 7b.png

Grafen til g har et toppunkt i x=1 og et bunnpunkt i x=3.

c)

$g' '(x) = \frac{ (2x-4)(x^2+3)-(x^2-4x+3)\cdot2x }{(x^2+3)^2} = \frac{2x^3+6x-4x^2-12-(2x^3-8x^2+6x)}{(x^2+3)^2} = \frac{4x^2-12}{(x^2+3)^2} = \frac{4(x^2-3)}{(x^2+3)^2}$

$g' '(x)=0 \\ \frac{4(x^2-3)}{(x^2+3)^2} = 0 \\ x^2-3 = 0 \\ x = \pm \sqrt{3}$

Nevner i $g' '(x)$ er alltid positiv, så begge løsninger er gyldige. Vi husker at funksjonen g(x) er definert for $x\in\R$.

Grafen til g har vendepunkt i $x=-\sqrt{3}$ og $x=\sqrt{3}$.

Oppgave 8

I trekanten ABC er AB = 8 cm, AC = 5 cm og BC = 7 cm.

a)

Lager et linjestykke, lager et punkt A på linjestykket, setter passerspissen i punkt A, og slår en bue på 8 cm. Vi får punkt B i skjæringspunktet mellom linjestykke og buen. Setter passerspissen i punkt A, og slår en bue med radius 5 cm. Setter passerspissen i punkt B, og slår en bue med radius 7 cm. I skjæringspunktet mellom sirkelbuene, får vi punkt C. Lager linje AC og BC. (Dette må du gjøre for hånd).

R1 H18 del1 8b.png

b)

Lager halveringslinje for vinkel A og B. I skjæringspunktet mellom disse to halveringslinjene, får vi sentrum i sirkelen, punkt S. Lager normal linje gjennom punkt S på linje AB. Får punkt P i skjæringspunktet mellom AB og normalen. SP er radius i sirkelen. Setter passerspissen i punkt S og lager en sirkel med radius SP.

R1 H18 del1 8b2.png

c)

Konstruerer en vinkel på 60 grader i punkt A, og en i punkt C. Får da punkt E i skjæringspunktet mellom vinkelbeina. Vinkel AEC er da også 60 grader fordi vinkelsummer i en trekant er 180 grader. Setter passerspissen i punkt E og slår en sirkel med radius EA. Setter passerspissen i punkt A og slår en sirkel med radius 6 cm (siden AD = 6 cm i firkanten ABCD) . Punkt D er i skjæringspunktet mellom de to sirklene våre (se figur). Vinkel ADC er 30 grader, fordi det er en periferivinkel til sirkelen med sentrum i punkt E, som spenner over samme sirkelbue som sentralvinkelen på 60 grader. Det andre skjæringspunktet mellom de to sirklene er ikke aktuelt som punkt D, fordi vi skal ha AD < CD.

R1 H18 del1 8c.png

DEL 2

Oppgave 1

a)

Bruker sannsynlighetskalkulatoren i Geogebra, og velger binomisk sannsynlighet, med n=10 og P=0.4.

R1 H18 del2 1a.png

Sannsynligheten for at halvparten (altså fem) av plantene til Astrid får gule blomster er 0,20.

b)

R1 H18 del2 1b.png

Sannsynligheten for at flere enn fem av plantene til Astrid får gule blomster er 0,1662.

c)

Bruker Microsoft Mathematics. Stian har 10 plasser hvor han kan plassere de 4 gule blomstene. Finner antall kombinasjoner av plasser for de gule blomstene. (De ledige plassene blir da fylt med røde blomster). Du kan også finne antall kombinasjoner av de 6 røde blomstene på 10 plasser, det blir det samme.

R1 H18 del2 1c.png

Stian kan plassere plantene i kassen på 210 ulike måter.

Oppgave 2

a)

$\angle DEA$ og $\angle DCB$ er samsvarende vinkler fordi $AE||BC$, og vinklene har et felles vinkelbein som skjærer de parallelle vinkelbeina. Samsvarende vinkler er like store, og vi har derfor $\angle DEA = \angle DCB$.

b)

$\angle ADE$ og $\angle BDC$ er toppvinkler, og er derfor like store. I tillegg har vi de samsvarende vinklene $\angle DEA = \angle DCB$.

Trekantene AED og BCD har to parvis like store vinkler, og er derfor formlike.

c)

Vi har $\angle DCB = \angle ACD$ fordi $\angle ACB$ halveres av en vinkelhalveringslinje. Vi har allerede vist at $\angle DEA = \angle DCB$, og har følgelig $\angle ACD = \angle DEA$. Trekant AEC har altså to like store vinkler, og er derfor likebeint.

d)

Vi har vist at trekant AEC er likebeint, så AE = AC og har lengden b.

Vi har også vist at trekant AED og trekant BCD er formlike. Side AE (med lengde b) og side BC (med lengde a) er samsvarende. Side AD og side DB er også samsvarende. Forholdet mellom samsvarende sider er likt.

Vi har derfor likheten $\frac{AD}{DB}=\frac{b}{a}$

e)

Vi har a = 6, b = 7 og c = 10.

Vi har $AD+DB = c$ og $\frac{AD}{DB}=\frac{b}{a}$. Bruker CAS i Geogebra 6.0 og setter inn verdiene til a, b og c i disse to likhetene. Løser likningssettet i CAS.

R1 H18 del2 2e.png

$AD = \frac{70}{13}$

Oppgave 3

Vi har punktene A(3,0) og B(5,5).

a)

Finner retningsvektor:

$\vec{AB}=[5-3, 5-0]=[2,5]$

$ \ell: \begin{cases} x=3+2t \\ y= 5t\\ \end{cases}$

b)