Forskjell mellom versjoner av «R1 2018 vår LØSNING»

Fra Matematikk.net
Hopp til:navigasjon, søk
Linje 135: Linje 135:
 
$f'(x)= 2e^{2x}-4e^x$
 
$f'(x)= 2e^{2x}-4e^x$
  
$f'(x)=0 \\ 2e^{2x}-4e^x = 0 \\ 2e^x(e^x-2)\\ e^x = 0 \vee e^x = 2 \\ \xcancel{x = ln 0} \vee x = ln 2 \\ x = ln 2 \approx 0,69$
+
$f'(x)=0 \\ 2e^{2x}-4e^x = 0 \\ 2e^x(e^x-2)\\ 2e^x = 0 \vee e^x = 2 \\ \xcancel{x = ln 0} \vee x = ln 2 \\ x = ln 2 \approx 0,69$
  
 
Forkaster $x = ln 0$ da $ln 0 $ ikke er definert.
 
Forkaster $x = ln 0$ da $ln 0 $ ikke er definert.

Revisjonen fra 26. jul. 2020 kl. 17:32

Oppgaven som pdf (scannet)

Diskusjon av denne oppgaven på matteprat

Løsningsforslag (pdf) (open source, meld fra om forbedringer eller feil her)

Løsningsforslag av LektorNilsen (pdf)

Løsning som video av Lektor Håkon Raustøl

DEL 1

Oppgave 1

a)

$f(x)=x^4-x+2$

$f'(x)=4x^3-1$

b)

$g(x)=x^3\cdot ln(x)$

$g'(x)=3x^2\cdot ln(x) + x^3 \cdot \frac{1}{x} = 3x^2ln(x)+x^2$

c)

$h(x)=e^{2x^2+x}$

$h'(x)=(4x+1)e^{2x^2+x}$

Oppgave 2

a)

$\frac{1}{2x-2}+\frac{2}{x-3}-\frac{x-2}{x^2-4x+3} \\ = \frac{1\cdot \color{blue}{(x-3)}}{2(x-1)\color{blue}{(x-3)}}+\frac{2\cdot \color{red}{2(x-1)}}{\color{red}{2(x-1)}(x-3)}-\frac{\color{orange}{2}(x-2)}{\color{orange}{2}(x-1)(x-3)} \\ =\frac{ (x-3) + (4x-4) - (2x-4)}{2(x-1)(x-3)} \\ = \frac{x+4x-2x -3-4+4}{2(x-1)(x-3)} \\ = \frac{3x-3}{2(x-1)(x-3)} \\ = \frac{3(x-1)}{2(x-1)(x-3)} \\ = \frac{3}{2(x-3)} \\ = \frac{3}{2x-6}$

b)

$2ln(x\cdot y^3)-\frac{1}{2}ln(\frac{x^4}{y^2}) \\ = 2(ln(x)+ln(y^3))-\frac{1}{2}(ln(x^4)-ln(y^2)) \\= 2(ln(x)+3ln(y))-\frac{1}{2}(4ln(x)-2ln(y)) \\= 2ln(x)+6ln(y)-2ln(x)+ln(y) \\= 7ln(y)$

Oppgave 3

Vi har punktene A(-2,-1), B(-1, -3), C(3, -1) og D(t,t^2+2) der $t\in R$.

a)

$\vec{AB} = [-1-(-2), -3-(-1)] = [1, -2]$

$\vec{BC} = [3-(-1), -1-(-3)] = [4, 2]$

b)

$[1,-2]\cdot[4,2] = 1\cdot 4 + (-2)\cdot 2 = 4-4 = 0$

Skalarproduktet av $\vec{AB}$ og $\vec{BC}$ er 0, og vi har derfor $\vec{AB}\perp\vec{BC}$

c)

$\vec{CD}=[t-3, t^2+2-(-1)] = [t-3, t^2+3]$

Dersom $\vec{CD}\| \vec{AB}$, så er $\vec{CD} = k\cdot\vec{AB}$

$[t-3,t^2+3]=k\cdot[1,-2]$

Vi får likningssettet:

$I \quad t-3 = k$

$II \quad t^2+3=-2k$

$II \quad t^2+3 = -2 (t-3) \\ \quad t^2 + 3 = -2t+6 \\ \quad t^2 + 2t -3 = 0 \\ \quad (t+3)(t-1) = 0 \\ \quad t = -3 \vee t = 1$

$\vec{CD}\| \vec{AB}$ når $ t = -3 \vee t = 1$.

Oppgave 4

Vi har $f(x)=x^3+k\cdot x + 12$

a)

Dersom $f(x):(x-1)$ skal gå opp, er x=1 et nullpunkt.

$f(1)=0 \\ 1^3+k\cdot 1 + 12 = 0 \\ k+13 = 0 \\ k=-13$

b)

Vi har nå $f(x)=x^3-13x+12$

Utfører polynomdivisjonen:

R1 V18 del1 4b.png

$f(x)=(x^2+x-12)(x-1) = (x-3)(x-1)(x+4)$

c)

$\frac{x^2+x-12}{x-1} \geq 0 \\ \frac{(x-3)(x+4)}{x-1} \geq 0$

R1 V18 del1 4c.png

$\frac{x^2+x-12}{x-1} \geq 0$ nå $x\in [-4,1]\cup [3,\rightarrow \rangle$

Oppgave 5

D = defekt

a)

$P(A \cap D) = 0,40 \cdot 0,03 = 0,012 = 1,2 \%$

Sannsynligheten for at laderen kommer fra leverandør A og er defekt, er 1,2%.

b)

$P(D)=P(D|A)\cdot P(A) + P(D|B)\cdot P(B) \\= 0,03\cdot 0,40 + 0,02 \cdot 0,60 = 0,012 + 0,012 = 0,024$

$P(A | D) = \frac{P(A) \cdot P(D|A)}{P(D)} = \frac{0,40 \cdot 0,03}{0,024} = \frac{0,012}{0,024} = 0,5 = 50\%$

Sannsynligheten for at en lader som er defekt, kommer fra leverandør A, er 50%.

Oppgave 6

Vi har $f(x)=e^{2x}-4e^x+3$

a)

$f(x)=0 \\ e^{2x}-4e^x+3 = 0 \\ \text{Setter} \,u = e^x \\ u^2 - 4u + 3 = 0 \\ (u-1)(u-3)=0 \\ u= 1 \vee u = 3 \\ e^x = 1 \vee e^x = 3 \\ x = ln 1 \vee x = ln 3 \\ x = 0 \vee x \approx 1,10 $

Nullpunktene til f er (0,0) og (1.10, 0).

b)

$f'(x)= 2e^{2x}-4e^x$

$f'(x)=0 \\ 2e^{2x}-4e^x = 0 \\ 2e^x(e^x-2)\\ 2e^x = 0 \vee e^x = 2 \\ \xcancel{x = ln 0} \vee x = ln 2 \\ x = ln 2 \approx 0,69$

Forkaster $x = ln 0$ da $ln 0 $ ikke er definert.

R1 V18 del1 6b.png

Finner funksjonsverdien i x = ln 2.

$f(ln 2) = e^{2(ln2)}-4e^{ln2} + 3 = e^{ln2^2}-4\cdot 2 + 3 = 4-8+3 = -1$

Grafen til f har et bunnpunkt i (0.69, -1).

c)

$f' '(x)=4e^{2x}-4e^x = 4e^x(e^x-1)$

$f' '(x)=0 \\ 4e^x(e^x-1) = 0 \\ 4e^x = 0 \vee e^x = 1 \\ \xcancel{x = ln0} \vee x=ln1 \\ x=0$

Finner funksjonsverdien i x = 0.

$f(0)=e^{2\cdot 0}-4e^0+3 = 1-4+3 = 0$

Grafen til f har et vendepunkt i (0,0).

d)