R1 2018 vår LØSNING

Fra Matematikk.net
Hopp til:navigasjon, søk

Oppgaven som pdf (scannet)

Diskusjon av denne oppgaven på matteprat

Løsningsforslag (pdf) (open source, meld fra om forbedringer eller feil her)

Løsningsforslag av LektorNilsen (pdf)

Løsning som video av Lektor Håkon Raustøl

DEL 1

Oppgave 1

a)

$f(x)=x^4-x+2$

$f'(x)=4x^3-1$

b)

$g(x)=x^3\cdot ln(x)$

$g'(x)=3x^2\cdot ln(x) + x^3 \cdot \frac{1}{x} = 3x^2ln(x)+x^2$

c)

$h(x)=e^{2x^2+x}$

$h'(x)=(4x+1)e^{2x^2+x}$

Oppgave 2

a)

$\frac{1}{2x-2}+\frac{2}{x-3}-\frac{x-2}{x^2-4x+3} \\ = \frac{1\cdot \color{blue}{(x-3)}}{2(x-1)\color{blue}{(x-3)}}+\frac{2\cdot \color{red}{2(x-1)}}{\color{red}{2(x-1)}(x-3)}-\frac{\color{orange}{2}(x-2)}{\color{orange}{2}(x-1)(x-3)} \\ =\frac{ (x-3) + (4x-4) - (2x-4)}{2(x-1)(x-3)} \\ = \frac{x+4x-2x -3-4+4}{2(x-1)(x-3)} \\ = \frac{3x-3}{2(x-1)(x-3)} \\ = \frac{3(x-1)}{2(x-1)(x-3)} \\ = \frac{3}{2(x-3)} \\ = \frac{3}{2x-6}$

b)

$2ln(x\cdot y^3)-\frac{1}{2}ln(\frac{x^4}{y^2}) \\ = 2(ln(x)+ln(y^3))-\frac{1}{2}(ln(x^4)-ln(y^2)) \\= 2(ln(x)+3ln(y))-\frac{1}{2}(4ln(x)-2ln(y)) \\= 2ln(x)+6ln(y)-2ln(x)+ln(y) \\= 7ln(y)$

Oppgave 3

Vi har punktene A(-2,-1), B(-1, -3), C(3, -1) og D(t,t^2+2) der $t\in R$.

a)

$\vec{AB} = [-1-(-2), -3-(-1)] = [1, -2]$

$\vec{BC} = [3-(-1), -1-(-3)] = [4, 2]$

b)

$[1,-2]\cdot[4,2] = 1\cdot 4 + (-2)\cdot 2 = 4-4 = 0$

Skalarproduktet av $\vec{AB}$ og $\vec{BC}$ er 0, og vi har derfor $\vec{AB}\perp\vec{BC}$

c)

$\vec{CD}=[t-3, t^2+2-(-1)] = [t-3, t^2+3]$

Dersom $\vec{CD}\| \vec{AB}$, så er $\vec{CD} = k\cdot\vec{AB}$

$[t-3,t^2+3]=k\cdot[1,-2]$

Vi får likningssettet:

$I \quad t-3 = k$

$II \quad t^2+3=-2k$

$II \quad t^2+3 = -2 (t-3) \\ \quad t^2 + 3 = -2t+6 \\ \quad t^2 + 2t -3 = 0 \\ \quad (t+3)(t-1) = 0 \\ \quad t = -3 \vee t = 1$

$\vec{CD}\| \vec{AB}$ når $ t = -3 \vee t = 1$.

Oppgave 4

Vi har $f(x)=x^3+k\cdot x + 12$

a)

Dersom $f(x):(x-1)$ skal gå opp, er x=1 et nullpunkt.

$f(1)=0 \\ 1^3+k\cdot 1 + 12 = 0 \\ k+13 = 0 \\ k=-13$

b)

Vi har nå $f(x)=x^3-13x+12$

Utfører polynomdivisjonen:

R1 V18 del1 4b.png

$f(x)=(x^2+x-12)(x-1) = (x-3)(x-1)(x+4)$

c)

$\frac{x^2+x-12}{x-1} \geq 0 \\ \frac{(x-3)(x+4)}{x-1} \geq 0$

R1 V18 del1 4c.png

$\frac{x^2+x-12}{x-1} \geq 0$ nå $x\in [-4,1]\cup [3,\rightarrow \rangle$

Oppgave 5

D = defekt

a)

$P(A \cap D) = 0,40 \cdot 0,03 = 0,012 = 1,2 \%$

Sannsynligheten for at laderen kommer fra leverandør A og er defekt, er 1,2%.

b)

$P(D)=P(D|A)\cdot P(A) + P(D|B)\cdot P(B) \\= 0,03\cdot 0,40 + 0,02 \cdot 0,60 = 0,012 + 0,012 = 0,024$

$P(A | D) = \frac{P(A) \cdot P(D|A)}{P(D)} = \frac{0,40 \cdot 0,03}{0,024} = \frac{0,012}{0,024} = 0,5 = 50\%$

Sannsynligheten for at en lader som er defekt, kommer fra leverandør A, er 50%.

Oppgave 6

Vi har $f(x)=e^{2x}-4e^x+3$

a)

$f(x)=0 \\ e^{2x}-4e^x+3 = 0 \\ \text{Setter} \,u = e^x \\ u^2 - 4u + 3 = 0 \\ (u-1)(u-3)=0 \\ u= 1 \vee u = 3 \\ e^x = 1 \vee e^x = 3 \\ x = ln 1 \vee x = ln 3 \\ x = 0 \vee x \approx 1,10 $

Nullpunktene til f er (0,0) og (1.10, 0).

b)

$f'(x)= 2e^{2x}-4e^x$

$f'(x)=0 \\ 2e^{2x}-4e^x = 0 \\ 2e^x(e^x-2)\\ 2e^x = 0 \vee e^x = 2 \\ \xcancel{x = ln 0} \vee x = ln 2 \\ x = ln 2 \approx 0,69$

Forkaster $x = ln 0$ da $ln 0 $ ikke er definert.

R1 V18 del1 6b.png

Finner funksjonsverdien i x = ln 2.

$f(ln 2) = e^{2(ln2)}-4e^{ln2} + 3 = e^{ln2^2}-4\cdot 2 + 3 = 4-8+3 = -1$

Grafen til f har et bunnpunkt i (0.69, -1).

c)

$f' '(x)=4e^{2x}-4e^x = 4e^x(e^x-1)$

$f' '(x)=0 \\ 4e^x(e^x-1) = 0 \\ 4e^x = 0 \vee e^x = 1 \\ \xcancel{x = ln0} \vee x=ln1 \\ x=0$

Finner funksjonsverdien i x = 0.

$f(0)=e^{2\cdot 0}-4e^0+3 = 1-4+3 = 0$

Grafen til f har et vendepunkt i (0,0).

d)

Du må tegne for hånd. Bruk nullpunktene og bunnpunktet fra de forrige oppgavene. Du regne noen omtrentlige funksjonsverdier for å få hjelp til å vite hvordan grafen går. I tillegg har vi at:

$\lim\limits_{x \to - \infty} f(x) = 3$

$\lim\limits_{x \to \infty} f(x) = \infty$

R1 V18 del1 6d.png

Oppgave 7

a)

For alle par av trekanter, har trekantene parvis like store vinkler, og forholdet mellom alle samsvarende sider er det samme. Alle trekantene er derfor formlike.

b)

Vi tar utgangspunkt i trekant ABD. Vinkelsummen i en trekant er 180 grader, altså er $\angle DAB + \angle BDA + \angle ABD = 180^{\circ}$.

Vi har $\angle DAB = \angle ADE$ fordi disse er samsvarende vinkler. Av samme grunn er $\angle ABD = \angle CDB$.

Det vil si at $\angle ADE + \angle BDA + \angle CDB = 180^{\circ}$, og punkt E, D og C ligger derfor på en rett linje.

c)