Forskjell mellom versjoner av «S2 2018 vår LØSNING»

Fra Matematikk.net
Hopp til:navigasjon, søk
Linje 155: Linje 155:
  
 
===b)===
 
===b)===
 +
 +
Finner grenseverdien av f(x) når x går mot uendelig:
 +
 +
$lim_{x \rightarrow \infty} e^{-x}=0$
 +
 +
Det vil si at når x går mot uendelig, går $e^{-x}$ mot null. Følgelig har vi at:
 +
 +
$lim_{x \rightarrow \infty} \frac{6}{1+e^{-x}}=\frac{6}{1+0}=6$
 +
 +
Finner grenseverdien av f(x) når x går mot minus uendelig:
 +
 +
$lim_{x \rightarrow - \infty} e^{-x}=e^{\infty}=\infty$
 +
 +
Det vil si at når x går mot minus uendelig, går $e^{-x}$ mot uendelig. Følgelig har vi at:
 +
 +
$lim_{x \rightarrow - \infty} \frac{6}{1+e^{-x}}=\frac{6}{\infty}=0$
 +
 +
Altså er $0<f(x)<6$.
  
 
=DEL 2=
 
=DEL 2=

Revisjonen fra 23. mar. 2019 kl. 21:36

oppgave som pdf

Diskusjon av denne oppgaven på matteprat

Løsning laget av mattepratbruker Tommy O.

DEL 1

Oppgave 1

a)

$f(x)=2x^3-4x+1 \\ f'(x) = 6x^2 - 4$

b)

$g(x)=\frac{x}{e^x}$

$g'(x)= \frac{1 \cdot e^x - x \cdot e^x}{(e^x)^2} = \frac{e^x (1-x)}{(e^x)(e^x)} = \frac{1-x}{e^x} $

c)

$h(x)=ln(x^2+4x) \\ g(u)=ln(u), \quad u=x^2+4x \\ h'(x)=g'(u)\cdot u'(x)=\frac{1}{u} \cdot u' =\frac{2x+4}{x^2+4x}$

Oppgave 2

$ I \quad \, 5x+y+2z=0 \\ II \,\,\,\, 2x+3y+z=3 \\ III \, 3x+2y-z=-3$

Legger sammen likning II og III.

$2x+3x + 3y + 2y + z-z = 3 -3 \\ 5x+5y=0 \\ x+y=0 \\ x=-y$

Setter inn $x=-y$ i likning I.

$5\cdot (-y)+y+2z=0 \\ -4y+2z=0 \\ 2z=4y \\ z=2y$

Setter inn $z=2y$ og $x=-y$ i likning II.

$2\cdot (-y)+3y+2y=3 \\ 3y=3 \\ y=1$

$x=-y=-1$

$z=2y=2\cdot 1=2$

Løsning: $x=-1,\,y=1,\,z=2$

Oppgave 3

a)

$P(x)=x^3-3x^2-13x+15$

$P(1)=1^3-3\cdot 1^2-13\cdot 1+15= 1-3-13+15=0$

x=1 er et nullpunkt, så P(x) er delelig med (x-1).

b)

Utfører polynomdivisjon for å faktorisere P(x)

S2 V18 del1 3b.png

Resten faktoriseres: $x^2-2x-15=(x^2-5x+3x+(-5)\cdot 3)=(x-5)(x+3)$. Bruk andregradsformelen ved behov.

Vi har $P(x)=(x-5)(x-1)(x+3)$. Bruker fortegnsskjema for å løse ulikheten.

S2 V18 del1 3b2.png

$P(x)>0$ når $-3<x<1$ og $x>5$.

Løsningen kan også skrives som $x \in \langle -3,\,1 \rangle$ og $x \in \langle 5,\, \rightarrow \rangle$

Oppgave 4

a)

Differansen, d, mellom to ledd i en aritmetisk rekke er konstant. Finner d:

$a_4=a_1+d+d+d \\ 14=2+3d \\ 3d=12 \\ d=4$

n 1 2 3 4 n
$a_n$ 2 6 10 14
Formel $2+4\cdot 0$ $2+4\cdot 1$ $2+4\cdot 2$ $2+4\cdot 3$ $2+4\cdot (n-1)=4n-2$

$a_n=4n-2$

b)

Summen av en aritmetisk rekke er gitt ved:

$S_n=\frac{a_1+a_n}{2} \cdot n$

Finner $a_{100}$:

$a_{100}=4\cdot 100-2=398$

Regner ut summen av de 100 første leddene i vår rekke:

$S_{100}=\frac{2+398}{2} \cdot 100 = 200 \cdot 100 = 20000$

Oppgave 5

a)

Dersom $-1<k<1$ i en geometrisk tallfølge $a_n=a_1k^{n-1}$ sier vi at den konvergerer. I slike tilfeller er $S_n=\frac{a_1}{1-k}$ når n går mot uendelig.

Her har vi $a_n=3\cdot (\frac{1}{4})^{n-1}$. Siden $-1<k<1$, så konvergerer rekken.

Regner ut summen av rekken når n går mot uendelig:

$S_n=\frac{3}{1-(\frac{1}{4})} = \frac{3}{\frac{3}{4}} = \frac{3\cdot 4}{3} = 4$

b)

$0,242424...=0,24+0,0024+0,000024+...=\frac{24}{100}+ \frac{24}{100^2}+\frac{24}{100^3}+...$

Dette er en geometrisk rekke hvor

$a_n=\frac{24}{100}\cdot (\frac{1}{100})^{n-1}$

Siden $-1<k<1$, konvergerer rekken. Summen av denne rekken når n går mot uendelig er:

$S_n=\frac{\frac{24}{100}}{1-\frac{1}{100}}=\frac{\frac{24}{100}}{\frac{99}{100}}=\frac{24}{99}$

Det betyr at $0,242424...$ kan skrives som $\frac{24}{99}$

Oppgave 6

a)

$f(x)=\frac{6}{1+e^{-x}}$

$f'(x)=\frac{0\cdot (1+e^{-x})-6\cdot (-e^{-x})}{(1+e^{-x})^2} = \frac{6e^{-x}}{1+2e^{-x}+e^{-2x}}$

Alle potenser av $e$ er positive (og større enn 0). Både telleren og nevneren til $f'(x)$ er altså positive. En brøk med positiv teller og nevner har alltid positiv verdi. Altså er $f'(x)>0$ for alle verdier av x. Det vil si at $f(x)$ er strengt voksende.

b)

Finner grenseverdien av f(x) når x går mot uendelig:

$lim_{x \rightarrow \infty} e^{-x}=0$

Det vil si at når x går mot uendelig, går $e^{-x}$ mot null. Følgelig har vi at:

$lim_{x \rightarrow \infty} \frac{6}{1+e^{-x}}=\frac{6}{1+0}=6$

Finner grenseverdien av f(x) når x går mot minus uendelig:

$lim_{x \rightarrow - \infty} e^{-x}=e^{\infty}=\infty$

Det vil si at når x går mot minus uendelig, går $e^{-x}$ mot uendelig. Følgelig har vi at:

$lim_{x \rightarrow - \infty} \frac{6}{1+e^{-x}}=\frac{6}{\infty}=0$

Altså er $0<f(x)<6$.

DEL 2

Oppgave 1

a)

Bruker Geogebra til å utføre en regresjonsanalyse på punktene i tabellen. Velger polynomfunksjon av 3. grad som modell for kostnadene, h(x). Se skjermbildet under.

S2 H18 Del2 1a.png

Jeg har funnet en modell for kostnaden, $h(x)=0,05x^3-1.97x^2+39,43x+501,02$

Inntekten er 80 kroner per enhet, og kan uttrykkes som $I(x)=80x$.

For å finne en modell for overskuddet, O(x), bruker jeg CAS i Geogebra, og regner ut O(x)=I(x)-h(x). Se skjermbildet under.

S2 H18 Del2 1a2.png

Jeg har dermed vist at funksjonen $O(x)=-0,05x^2+2,0x^2+41x-501$ (noe avrundet) er en god modell for det daglig overskuddet til bedriften ved produksjon av x enheter.

b)