Forskjell mellom versjoner av «S2 2019 høst LØSNING»

Fra Matematikk.net
Hopp til:navigasjon, søk
Linje 58: Linje 58:
  
 
$S=\frac{6}{1-(-\frac{1}{2})} = \frac{6}{\frac{3}{2}} = \frac{6\cdot 2}{3}=4$
 
$S=\frac{6}{1-(-\frac{1}{2})} = \frac{6}{\frac{3}{2}} = \frac{6\cdot 2}{3}=4$
 +
 +
===b)===
 +
 +
$0,135135135... = 0,135 + 1,000135 + 0,000000135 + … = \frac{135}{1000} +\frac{135}{1000^2}+\frac{135}{1000^3}+...$
 +
 +
Dette kan uttrykkes som en geometrisk rekke:
 +
 +
$a_n=\frac{135}{1000} \cdot (\frac{1}{1000})^{n-1}$
 +
 +
Vi har $-1<k<1$, så denne rekken konvergerer. Summen av den geometriske rekken, altså tallet $0,135135135...$ blir da:
 +
 +
$S=\frac{a_1}{1-k}=\frac{\frac{135}{1000}}{1-\frac{1}{1000}} = \frac{\frac{135}{1000}}{\frac{999}{1000}} = \frac{135}{999}=\frac{45}{333}=\frac{15}{111}=\frac{5}{37}$
 +
 +
Det kan være vanskelig å vite at teller og nevner i $\frac{135}{999}$ er delelig på 27, så jeg deler teller og nevner på 3, i tre omganger.
 +
 +
$0,135135135...=\frac{5}{37}$
 +
 +
==Oppgave 4==

Revisjonen fra 3. jan. 2020 kl. 18:40

oppgaven som pdf

diskusjon av oppgaven på matteprat

Løsningsforslag til del 2 laget av mattepratbruker Krisian Saug

Løsningsforslag del 1 og del 2 laget av Svein Arneson

DEL 1

Oppgave 1

a)

$f(x)=\frac{1}{2}\ln{x}$

$f'(x)=\frac{1}{2x}$

b)

$g(x)=3x\cdot e^{2x}$

$g'(x)=3\cdot e^{2x}+3x\cdot 2\cdot e^{2x} \\ g'(x)=3e^{2x} (2x+1)$

c)

$h(x)=\frac{x^2+1}{x-3}$

$h'(x)=\frac{2x\cdot (x-3) - (x^2+1)\cdot 1}{(x-3)^2} \\ h'(x)=\frac{2x^2-6x-x^2-1}{x^2-6x+9} \\ h'(x)=\frac{x^2-6x-1}{x^2-6x+9}$

Oppgave 2

a)

$a_n=a_1+(n-1)\cdot d \\ a_4=a_1+(4-1)\cdot d \\ 7=-8+3d \\ 3d=15 \\ d=5$

$a_n=-8+(n-1)\cdot 5 \\ a_n=-8+5n-5 \\ a_n=5n-13$

b)

$a_{40}=5\cdot 40-13=200-13=187$

$S_n=\frac{a_1+a_n}{2}\cdot n \\ S_{40}=\frac{-8+187}{2}\cdot 40 \\ S_{40}=179\cdot 20 \\ S_{40}=3580$

Oppgave 3

a)

$a_n=a_1\cdot k^{n-1}$

For denne rekka har vi:

$a_n=6\cdot (-\frac{1}{2})^{n-1}$

Dersom $-1<k<1$ i en geometrisk tallfølge $a_n=a_1k^{n-1}$ sier vi at den konvergerer. I dette tilfelle er $k=-\frac{1}{2}$, så rekken konvergerer.

I slike tilfeller er summen $S=\frac{a_1}{1-k}$.

$S=\frac{6}{1-(-\frac{1}{2})} = \frac{6}{\frac{3}{2}} = \frac{6\cdot 2}{3}=4$

b)

$0,135135135... = 0,135 + 1,000135 + 0,000000135 + … = \frac{135}{1000} +\frac{135}{1000^2}+\frac{135}{1000^3}+...$

Dette kan uttrykkes som en geometrisk rekke:

$a_n=\frac{135}{1000} \cdot (\frac{1}{1000})^{n-1}$

Vi har $-1<k<1$, så denne rekken konvergerer. Summen av den geometriske rekken, altså tallet $0,135135135...$ blir da:

$S=\frac{a_1}{1-k}=\frac{\frac{135}{1000}}{1-\frac{1}{1000}} = \frac{\frac{135}{1000}}{\frac{999}{1000}} = \frac{135}{999}=\frac{45}{333}=\frac{15}{111}=\frac{5}{37}$

Det kan være vanskelig å vite at teller og nevner i $\frac{135}{999}$ er delelig på 27, så jeg deler teller og nevner på 3, i tre omganger.

$0,135135135...=\frac{5}{37}$

Oppgave 4