Med prosent mener vi "del av hundre". Vi bruker tegnet %.

Eksempel 1:

58% er det samme som $\frac{58}{100}$ eller 0,58.


Som vi ser er det en sammenheng mellom prosent, brøk og desimaltall. Desimaltallet, i dette tilfellet 0,58, kalles ofte prosentfaktoren. Skal vi gå fra prosent til brøk tar vi prosenten og deler på 100. Utfører vi divisjonen finner vi prosentfaktoren.


Test deg selv

Innhold

Del av tallet

For å finne delen av tallet må vi kjenne hele tallet, altså det vi skal finne prosenten av, og prosenten:


$$\text{Del av tallet} = \frac{\text {Heletallet} \cdot \text {Prosent}}{100} $$


Eksempel 2:

En TV er på tilbud. Full pris er 3600 kr. Hva er avslaget i kroner når man får 20% avslag på full pris?


$$\text {Del av tallet}= \frac{3600kr \cdot 20}{100} = 720 kr$$

Test deg selv

Prosenten

For å finne prosenten, må vi kjenne hele tallet og delen av tallet:

$$Prosent= \frac{\text {Del av tallet} \cdot 100}{\text {Hele tallet}} $$


Eksempel 3:

Av en befolkning på 500.000 er det 6000 som lider av schizofreni. Hvor mange prosent lider av sykdommen?

$$\text {Prosent} = \frac {6000 \cdot 100}{500.000}= 1,2 \percent$$



Test deg selv

Hele tallet

For å finne Hele tallet, må vi kjenne prosenten og "delen av tallet":

$$ \text {Hele tallet} = \frac{\text {Del av tallet} \cdot 100}{\text {Prosent}} $$


Eksempel 4:
På en arbeidsplass var det 8 personer som var syke. Det var 20% av alle ansatte. Hvor mange ansatte var det på arbeidsplassen?


$$ \text {Hele tallet} = \frac{8 \cdot 100}{20}= 40 $$

Altså var det 40 personer som var ansatt på dette stedet.


Test deg selv

Endringer i prosent

Det spørres ofte etter endringer i prosent. Husk på at endringen av verdi kan betraktes som del av tallet.

Endring av verdi er det som er nå, minus det som var før.

Endring i prosent er verdiendring delt på den verdi som var før, multiplisert med 100.


Eksempel 5:

Prisen på en bolig steg fra kr. 1.600.000 til kr. 1.900.000 på et år. Hva var prisstigningen i prosent?

Endringen: 1.900.000kr. - 1.600.000 = 300.000 kr.

Her er hele tallet 1.600.000 da dette var verdien på boligen før endringen. Vi får:

$$\frac {300.000 \cdot 100}{1.600.000} =18,75\percent $$


Eksempel 6:

Antall arbeidsledige går ned fra 80600 til 69000, fra en måned til den neste. Hvor stor var nedgangen i prosent?

Vi får:

80600 personer - 69000 personer = 11600 personer

$$\frac {11600 \cdot 100}{80600} =14,4 \percent $$

Test deg selv


Vekstfaktor

Når vi ønsker å finne den nye verdien etter en endring i prosent.

Dersom en størrelse endrer seg over tid med en fast prosent kan det være hensiktsmessig å regne med vekstfaktor.


Økning, vekst

Dersom en størrelse vokser med 18% per tidsenhet blir vekstfaktoren:

(100% + 18%) /100% = 118/100 = 1,18

eller

$(1+ \frac{18}{100})= 1+ 0,18 = 1,18$

Dersom en størrelse vokser, øker, er vekstfaktoren større enn 1.

Tidsenheter kan være sekunder, minutter, timer, døgn, uker, måneder, år osv.

Dersom vi snakker om renter på bankinnskudd er ofte tidsperioden år.

Dersom vi snakker om bakterievekst kan det være timer.

Dersom vi snakker om gjennomsnittstemperatur kan det være uker eller måneder. Les oppgaven nøye.

$( 1 + \frac{p}{100} ) $ der p er prosenten det øker med.


EKSEMPEL 7

Eva setter inn 15 000 kroner på en sparekonto med 4% renter per år. Hvor mye har hun på kontoen et år senere?

Vi finner først vekstfaktoren: $1+ \frac{4}{100} = 1,04$

Vi multipliserer det beløpet hun satte inn med vekstfaktoren, og får det beløpet hun har etter ett år:

$15000 kr \cdot 1,04 = 15600 kr$

Hun har altså økt formuen med 600 kroner på et år og har nå 15600 kroner i banken.



Reduksjon

Dersom noe reduseres, minker eller avtar ( alle tre ordene betyr det samme ) med en gitt prosent per tidsenhet er vekstfaktoren gitt ved:

$1- \frac {p}{100}$ , der p er prosenten størrelsen avtar med.

Vi observerer at ved reduksjon er pluss erstattet av minus.

Dersom en størrelse avtar er alltid vekstfaktoren mindre enn en.


EKSEMPEL 8

En bil forventes å miste 17% av sin verdi per år de første åtte årene. Ny koster den 400 000 kr. Hva koster den om åtte år?

Løsning

Vekstfaktoren blir $1 - \frac{17}{100} = 0,83$

$400000 \cdot 0,83^8 = 90091$

Etter åtte år er bilens verdi ca. 90 000 kroner.


Eksempler på prosentvis endring opp og ned, med tilhørende vekstfaktor

Prosent - opp / ned Vekstfaktor
+12 % 1,12
- 16 % 0,84
+ 1,3 % 1,013
- 0,7 % 0,993
+ 50 % 1,5
+ 100 % 2
+ 300 % 4

Prosentvis vekst over flere perioder

Dersom en verdi A vokser med en gitt prosent over flere tidsperioder kan det uttrykkes slik:

Vekstfaktor = VF

$A \cdot (VF)^t $, der t er tidsperioder, for eksempel år.


Eksempel 9

Jon Erik setter inn 6000 kroner i banken i år 2000. Hvor mye har han på den kontoen i 2040, altså etter 40 år, når renten hele tiden er 2,5% per år?

Vekstfaktoren er 1,025. Vi får:

$6000 \cdot 1,025^{40} = 16110,38$ kr.

Fortid - bakover i tid

Eksempel 10

La oss tenke oss at vi er i 2040. Jon Erik satte inn ett beløp i banken for førti år siden, til en rente på 2,5% per år. Han har nå 16110,38 kroner på konto, men har glemt hvor mye han satte inn for 40 år siden. Han ønsker å finne beløpet ved å regne tilbake i tid:

La oss kalle beløpet han satte inn for x.

Vi får

$x \cdot 1,025^{40} = 16110,38 \\ x = \frac{16110,38}{1,025^{40}} = 6000$

I dette eksempelet var det en størrelse som vokste, men metoden fungerer like godt på noe som minker, så lenge du har vekstfaktoren og hvor lang tid du skal bakover.

Sammenlikne størrelser

Eksempel 11


Vi har to tall, 75 og 100.

Hvor mange prosent større er 100 enn 75?

Her er det 75 som er referansen. Det ser man av "..... enn 75?". Da blir prosenten forskjellen delt på 75, ganger hundre:

$ \frac {100-75}{75} \cdot 100$ % $ = 33,3 $%

100 er altså 33,3% større enn 75.


Hvor mange prosent mindre er 75 enn 100?

Nå er det 100 som er referansen, det forskjellen skal måles mot:

$\frac{100-75}{100} \cdot 100 $ % $= 25$ %

75 er 25% mindre enn 100.

Det er ikke alltid like klart hva som er referansen, altså hva forskjellen skal sammenlignes med. Bruk litt tid på å lese og analysere oppgaveteksten.

Når prosenten spretter opp og ned......

Eksempel 12


Verdien av en aksje kan sprette opp og ned flere ganger i løpet av en dag. Astrid følger aksjekursen til et selskap i fem dager, fra mandag til fredag. Mandag er aksjekursen 172 kroner. Tirsdag har kursen økt med 12%. Onsdag øker den ytterligere med 23%. Torsdag er en dårlig dag, kursen går ned 47%. Fredag stiger kursen med 6%.

Hva var aksjens verdi onsdag?

Her er det gunstig å bruke vekstfaktorer: $172 \cdot 1,12 \cdot 1,23 = 236,95$ kroner

Hva var aksjens verdi torsdag?

$172 \cdot 1,12 \cdot 1,23 \cdot 0,53 = 125, 58 $ kroner

Hva var den totale endringen i prosent fra mandag til fredag?

Aksjens verdi fredag: $125,58 \cdot 1,06 =133,11$

Differanse: 172 kr - 133,11 kr = 38,89 kr

Aksjens verdi har falt med 38,89 kroner. Nedgangen i prosent fra mandag til fredag blir da: $\frac{38,89}{172} \cdot 100$ % = 22, 6%