Eksamen R2 høst 2020

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga

Guest

Kristian Saug wrote:Hei,

Vedlagt er mitt løsningsforslag på del 2.

Ser frem til et bedre LF på oppg 4c!
CAS taklet dessverre ikke oppg 4d.....
Ser du har tolka første oppgave som at første året er det ingen endring, men jeg tolka det som endring fra og med første til og med tiende. Føler oppgaveteksten sier det, men vet ikke om du er enig?
Colebra
Pytagoras
Pytagoras
Posts: 11
Joined: 19/11-2019 18:16

Kristian Saug wrote:Hei,

Vedlagt er mitt løsningsforslag på del 2.

Ser frem til et bedre LF på oppg 4c!
CAS taklet dessverre ikke oppg 4d.....
Dette er tredje gangen jeg hører at geogebra klikka på oppgave 4d. Haha hva er greia?? Kunne jo ha gått galt for flere på eksamen..
Colebra
Pytagoras
Pytagoras
Posts: 11
Joined: 19/11-2019 18:16

Gjest wrote:
Kristian Saug wrote:Hei,

Vedlagt er mitt løsningsforslag på del 2.

Ser frem til et bedre LF på oppg 4c!
CAS taklet dessverre ikke oppg 4d.....
Ser du har tolka første oppgave som at første året er det ingen endring, men jeg tolka det som endring fra og med første til og med tiende. Føler oppgaveteksten sier det, men vet ikke om du er enig?
Står i oppgaveteksten at de slipper ut 5000kg gass første året. Du tenkte a1 som 5000-277?
Guest

Colebra wrote:
Gjest wrote:
Kristian Saug wrote:Hei,

Vedlagt er mitt løsningsforslag på del 2.

Ser frem til et bedre LF på oppg 4c!
CAS taklet dessverre ikke oppg 4d.....
Ser du har tolka første oppgave som at første året er det ingen endring, men jeg tolka det som endring fra og med første til og med tiende. Føler oppgaveteksten sier det, men vet ikke om du er enig?
Står i oppgaveteksten at de slipper ut 5000kg gass første året. Du tenkte a1 som 5000-277?
Gikk litt fort i svingene her ser jeg. Står jo tydelig det ja. De trekker vel ikke mye for at jeg har tolka det slik på alle oppgavene? Tror jeg ellers har alt på del 1 og 2, så burde vel ikke koste meg sekseren?
Guest

Står i oppgaveteksten at de slipper ut 5000kg gass første året. Du tenkte a1 som 5000-277?[/quote]

Gikk litt fort i svingene her ser jeg. Står jo tydelig det ja. De trekker vel ikke mye for at jeg har tolka det slik på alle oppgavene? Tror jeg ellers har alt på del 1 og 2, så burde vel ikke koste meg sekseren?[/quote]

Hadde nok sett feilen hvis jeg hadde sett over, men all tida gikk jo til siste oppgave som geogebra ikke takla.
gjest12

Cas fungerte ikke for meg heller, så jeg la ved skjermbilde av feilen og viste at formelen fungerer med en mindre avansert funksjon.. på 4d.
Guest

gjest12 wrote:Cas fungerte ikke for meg heller, så jeg la ved skjermbilde av feilen og viste at formelen fungerer med en mindre avansert funksjon.. på 4d.
du skulle svart at utregningen er etterlatt som en øvelse for leseren :lol: :lol:
123321

Hva tenker folk er 6er kravet på den her (skjønner at det kommer en del an på inntrykk osv.)? Tror del 1 var feilfri. På første oppgaven del 2 leste jeg feil, og regnet ut endring fra og med år. 1, istedenfor at de har samme utslipp første året. På siste oppgave c) regnet jeg ut ca. overflateareal ved å bare dele volumet på 0,03. På d) viste jeg at CAS ikke klarte utregninga. Resten av del 2 var riktig. Synes jo dette burde være en klar 6er?
Guest

123321 wrote:Hva tenker folk er 6er kravet på den her (skjønner at det kommer en del an på inntrykk osv.)? Tror del 1 var feilfri. På første oppgaven del 2 leste jeg feil, og regnet ut endring fra og med år. 1, istedenfor at de har samme utslipp første året. På siste oppgave c) regnet jeg ut ca. overflateareal ved å bare dele volumet på 0,03. På d) viste jeg at CAS ikke klarte utregninga. Resten av del 2 var riktig. Synes jo dette burde være en klar 6er?
Det virker jo som du bare har slurva, men jeg vet ikke hva sensor trekker for noe sånnt?
Guest

Bare Jeg som slet med oppgave 3B? Jeg synes egentlig trigonometriske likninger pleier å være veldig greit, men akkurat den klarte jeg ikke å løse...
Guest

Gjest wrote:Bare Jeg som slet med oppgave 3B? Jeg synes egentlig trigonometriske likninger pleier å være veldig greit, men akkurat den klarte jeg ikke å løse...
Jeg gjorde den til slutt om til en ren sinusfunksjon!
Mattebruker

OPPG. 3 b ) ( del 1 )

[tex]\sqrt{3}[/tex] sinx - cosx = 1 [tex]\Leftrightarrow[/tex] ( : 2 )

[tex]\frac{\sqrt{3}}{2}[/tex] sinx - [tex]\frac{1}{2}[/tex] cosx = [tex]\frac{1}{2}[/tex]

Registrerer at [tex]\frac{\sqrt{3}}{2}[/tex] = sin([tex]\frac{\pi }{3}[/tex]) [tex]\wedge[/tex] [tex]\frac{1}{2}[/tex] = cos([tex]\frac{\pi }{3}[/tex] ). Da kan vi skrive

sin[tex]\frac{\pi }{3}[/tex] [tex]\cdot[/tex] sinx - cos[tex]\frac{\pi }{3}[/tex] cosx = [tex]\frac{1}{2}[/tex]

[tex]\Leftrightarrow[/tex][ sinu sinv - cosu cosv = - cos( u + v ) ]

-1 [tex]\cdot[/tex] cos( x + [tex]\frac{\pi }{3}[/tex] ) = [tex]\frac{1}{2}[/tex]

[tex]\Leftrightarrow[/tex]

cos( x + [tex]\frac{\pi }{3}[/tex] ) = - [tex]\frac{1}{2}[/tex]

[tex]\Leftrightarrow[/tex]

x + [tex]\frac{\pi }{3}[/tex] = [tex]\frac{2\pi }{3}[/tex] + n [tex]\cdot[/tex]2[tex]\pi[/tex] eller x + [tex]\frac{\pi }{3}[/tex] = -[tex]\frac{2\pi }{3}[/tex] + n [tex]\cdot[/tex] 2[tex]\pi[/tex] , n [tex]\in[/tex] Z


[tex]\Rightarrow[/tex] ( x [tex]\in[/tex] [ 0 , 2[tex]\pi[/tex] [tex]>[/tex] )

x = [tex]\frac{\pi }{3}[/tex] eller x = [tex]\pi[/tex]
Kristian Saug
Abel
Abel
Posts: 637
Joined: 11/11-2019 18:23

Hei,

Vedlagt er et løsningsforslag på del 1.
Attachments
R2 Ht20 del 1.docx
(4.96 MiB) Downloaded 6411 times
Mattebruker

OPPG. 2 c - del1 ( rask løysing )

[tex]\int \frac{2x - 2 }{x^{2} - 2x - 3}[/tex] dx = [tex]\int[/tex][tex]\frac{(x^{2} - 2x - 3)'}{x^{2} - 2x - 3}[/tex] dx = ( kjerneregelen baklengs ) ln [tex]\left |x^{2}- 2x - 3\right |[/tex] + C

OPPG. 3b ( del 1 ) Alternativ løysing

[tex]\sqrt{3}[/tex] sinx - cosx = 1 [tex]\Leftrightarrow[/tex] ( : 2 )

[tex]\frac{\sqrt{3}}{2}[/tex] sinx - [tex]\frac{1}{2}[/tex] cosx = [tex]\frac{1}{2}[/tex]

Registrerer at [tex]\frac{\sqrt{3}}{2}[/tex] = cos([tex]\frac{\pi }{6}[/tex] ) og [tex]\frac{1}{2}[/tex] = sin([tex]\frac{\pi }{6}[/tex] ). Da kan vi skrive

cos([tex]\frac{\pi }{6}[/tex] ) [tex]\cdot[/tex] sinx - sin([tex]\frac{\pi }{6}[/tex] ) [tex]\cdot[/tex] cosx = [tex]\frac{1}{2}[/tex] [tex]\Leftrightarrow[/tex] [ sin( u - v ) = sinu cosv - sinv cosu ]

sin( x - [tex]\frac{\pi }{6}[/tex] ) = [tex]\frac{1}{2}[/tex] [tex]\Leftrightarrow[/tex]

x - [tex]\frac{\pi }{6}[/tex] = [tex]\frac{\pi }{6}[/tex] + n [tex]\cdot[/tex] 2[tex]\pi[/tex] [tex]\vee[/tex] x - [tex]\frac{\pi }{6}[/tex] = ( [tex]\pi[/tex] - [tex]\frac{\pi }{6}[/tex] ) + n[tex]\cdot[/tex] 2[tex]\pi[/tex] , n [tex]\in[/tex] Z


[tex]\Leftrightarrow[/tex]
x = [tex]\frac{\pi }{3}[/tex] + n [tex]\cdot[/tex] 2[tex]\pi[/tex] [tex]\vee[/tex] x = [tex]\pi[/tex] + n [tex]\cdot[/tex] 2[tex]\pi[/tex] ( allmenn løysing )

[tex]\Rightarrow[/tex] ( x [tex]\in[/tex] [ 0 , 2[tex]\pi[/tex] [tex]>[/tex] ) x = [tex]\frac{\pi }{3}[/tex] [tex]\vee[/tex] x = [tex]\pi[/tex]
nyskjerrigjente20

Mattegjest wrote:OPPG. 2 c - del1 ( rask løysing )

[tex]\int \frac{2x - 2 }{x^{2} - 2x - 3}[/tex] dx = [tex]\int[/tex][tex]\frac{(x^{2} - 2x - 3)'}{x^{2} - 2x - 3}[/tex] dx = ( kjerneregelen baklengs ) ln [tex]\left |x^{2}- 2x - 3\right |[/tex] + C

OPPG. 3b ( del 1 ) Alternativ løysing

[tex]\sqrt{3}[/tex] sinx - cosx = 1 [tex]\Leftrightarrow[/tex] ( : 2 )

[tex]\frac{\sqrt{3}}{2}[/tex] sinx - [tex]\frac{1}{2}[/tex] cosx = [tex]\frac{1}{2}[/tex]

Registrerer at [tex]\frac{\sqrt{3}}{2}[/tex] = cos([tex]\frac{\pi }{6}[/tex] ) og [tex]\frac{1}{2}[/tex] = sin([tex]\frac{\pi }{6}[/tex] ). Da kan vi skrive

cos([tex]\frac{\pi }{6}[/tex] ) [tex]\cdot[/tex] sinx - sin([tex]\frac{\pi }{6}[/tex] ) [tex]\cdot[/tex] cosx = [tex]\frac{1}{2}[/tex] [tex]\Leftrightarrow[/tex] [ sin( u - v ) = sinu cosv - sinv cosu ]

sin( x - [tex]\frac{\pi }{6}[/tex] ) = [tex]\frac{1}{2}[/tex] [tex]\Leftrightarrow[/tex]

x - [tex]\frac{\pi }{6}[/tex] = [tex]\frac{\pi }{6}[/tex] + n [tex]\cdot[/tex] 2[tex]\pi[/tex] [tex]\vee[/tex] x - [tex]\frac{\pi }{6}[/tex] = ( [tex]\pi[/tex] - [tex]\frac{\pi }{6}[/tex] ) + n[tex]\cdot[/tex] 2[tex]\pi[/tex] , n [tex]\in[/tex] Z


[tex]\Leftrightarrow[/tex]
x = [tex]\frac{\pi }{3}[/tex] + n [tex]\cdot[/tex] 2[tex]\pi[/tex] [tex]\vee[/tex] x = [tex]\pi[/tex] + n [tex]\cdot[/tex] 2[tex]\pi[/tex] ( allmenn løysing )

[tex]\Rightarrow[/tex] ( x [tex]\in[/tex] [ 0 , 2[tex]\pi[/tex] [tex]>[/tex] ) x = [tex]\frac{\pi }{3}[/tex] [tex]\vee[/tex] x = [tex]\pi[/tex]
Post Reply