vektorar

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

vektorar

Innlegg geil » 18/02-2020 21:37

Hei!
Korleis kan ein bevise denne oppgåven-
Har gjort eit forsøk nedafor, men er svært usikker om dette
kan vere riktig.
Hadde vore fint om nokon kan hjelpe

B 2.90
Linja l er gitt ved

l: {█(x=1-t @y=3t @z=3+2t)┤

Vis at l er parallell med planet π: x + y – z + 3 = 0

n_l = [-1, 3, 2] og n_π = [1, 1, - 1]

Når l er parallell med planet π vil n_l ⏊ n_π ⇔ n_l · n_π = 0

n_l · n_π = [-1, 3, 2] · [1, 1, - 1] = ((- 1) · 1 + 3 · 1 + 2 · (- 1)) = - 1 + 3 – 2 = 0

Dermed har vi bevisst at l∥π.
geil offline

Re: vektorar

Innlegg Kristian Saug » 18/02-2020 22:34

Helt riktig!

Liten kommentar:
Det er vanlig å kalle retningsvektoren for linja [tex]l[/tex] for [tex]\overrightarrow{r_{l}}[/tex].
Kristian Saug offline
Weierstrass
Weierstrass
Innlegg: 462
Registrert: 11/11-2019 18:23

Re: vektorar

Innlegg geil » 19/02-2020 09:25

Takk for svaret,
Lurer på om kva om eg set parameterframstilling til l inn i likninga til planet π:

π: x + y – z + 3 = 0
(1 – t) + 3t – (3 + 2t) + 3 = 0
1 – t + 3t – 3 – 2t + 3 = 0
- t + 3t – 2t = - 1 + 3 - 3
0t = - 1

Fasit gir dette svaret 0t = - 1, men eg forstår ikkje kva det betyr her når eg skal bevise at
linja l er parallell med planet

NB! Kan nokon hjelpe meg her
geil offline

Re: vektorar

Innlegg Kristian Saug » 19/02-2020 09:44

Hei igjen,

Med ditt siste innlegg viser du at linja [tex]l[/tex] ikke ligger i planet [tex]\Pi[/tex].
Og med ditt første innlegg viser du at linja [tex]l[/tex] er parallell med planet [tex]\Pi[/tex].

Begge deler er riktig. Men det var vel bare parallelliteten det var spørsmål om.

Konklusjon:

Linja [tex]l[/tex] er parallell med planet [tex]\Pi[/tex] og avstanden mellom dem er

[tex]d=[/tex][tex]\begin{vmatrix} \frac{1\cdot 1+1\cdot 0-1\cdot 3+3}{\sqrt{1^2+1^2+(-1)^2}} \end{vmatrix}[/tex][tex]=\frac{1}{\sqrt{3}}[/tex]



Se vedlegg for visualisering.
Vedlegg
plan og linje.odt
(53.48 KiB) 6 ganger
Kristian Saug offline
Weierstrass
Weierstrass
Innlegg: 462
Registrert: 11/11-2019 18:23

Re: vektorar

Innlegg josi » 19/02-2020 18:01

geil skrev:Takk for svaret,
Lurer på om kva om eg set parameterframstilling til l inn i likninga til planet π:

π: x + y – z + 3 = 0
(1 – t) + 3t – (3 + 2t) + 3 = 0
1 – t + 3t – 3 – 2t + 3 = 0
- t + 3t – 2t = - 1 + 3 - 3
0t = - 1

Fasit gir dette svaret 0t = - 1, men eg forstår ikkje kva det betyr her når eg skal bevise at
linja l er parallell med planet

NB! Kan nokon hjelpe meg her


0t = -1 forteller at det ikke finnes noen t som passer i likningen for planet. Det betyr at linjen ikke krysser planet eller ligger i planet. Følgelig må den være parallell med planet. 0t = -1 viser altså noe mer enn at linjen ikke ligger i planet.
josi offline

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 294 gjester