Julekalender #19

Her kan brukere av forum utfordre hverandre med morsomme oppgaver og nøtter man ønsker å dele med andre. Dette er altså ikke et sted for desperate skrik om hjelp, de kan man poste i de andre forumene, men et sted for problemløsing på tvers av trinn og fag.

Julekalender #19

Innlegg Gustav » 19/12-2017 19:49

La $x=1,2,3$ være løsninger av ligningen $x^4+ax^2+bx+c=0$.

Bestem verdien av $a+c$.
Gustav offline
Tyrann
Tyrann
Innlegg: 4406
Registrert: 12/12-2008 12:44

Re: Julekalender #19

Innlegg Kay » 19/12-2017 20:53

Vet ikke om det skulle forstås slik at [tex]x=1,2,3[/tex] er de eneste løsningene?

La [tex]f(x)=x^4+ax^2+bx+c[/tex]

da er

[tex]f(1)= a+b+c+1=0[/tex]

[tex]f(2)=4a+2b+c+16=0[/tex]

[tex]f(3)=9a+3b+c+81=0[/tex]


Da får vi at

[tex]\begin{pmatrix} 1 &1 &1 &-1 \\ 4 &2 &1 &-16 \\ 9 &3 &1 &-81 \end{pmatrix}[/tex]

Anvender Gauss-Jordan og får [tex]a=-25, b=60, c=-36 \Rightarrow a+c =-61[/tex]

I dette tilfellet vil forøvrig [tex]x=-6[/tex] være en løsning av likninga.
[tex]\rho \frac{D\textbf{v}}{Dt}=-\nabla p+\rho\textbf{g}+\mu \nabla^2\textbf{v}[/tex]
Kay offline
Galois
Galois
Innlegg: 583
Registrert: 13/06-2016 18:23
Bosted: Gløshaugen

Re: Julekalender #19

Innlegg Gustav » 20/12-2017 00:16

Selvsagt riktig!

En alternativ løsning er å bruke faktorteoremet for å uttrykke venstresida som et produkt av faktorer på formen $x-x_0$ der $x_0$ er løsninger.
Gustav offline
Tyrann
Tyrann
Innlegg: 4406
Registrert: 12/12-2008 12:44

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 7 gjester