Enkelt direkte bevis (Arcsin)

Mange finner bevis vanskelig. Her er rom for spørsmål vedrørende bevis, og for å dele dine bevis med andre. Vi tenker først og fremst videregående nivå, men det er ingen begrensninger her.

Enkelt direkte bevis (Arcsin)

Innlegg =) » 06/10-2007 21:27

Dette er veldig enkelt og veldig rett frem, men jeg tar det fordi resultatet har jeg funnet veldig nyttig mangt en gang.

[tex]sin\gamma = \frac{e^{i\gamma} - e^{-i\gamma}}{2i}[/tex]

[tex]\frac{e^{i\gamma} - e^{-i\gamma}}{2i} = u[/tex]

[tex]e^{i\gamma} - e^{-i\gamma} = 2iu[/tex]

[tex]e^{i\gamma} - e^{-i\gamma} = 2iu |\cdot e^{i\gamma}[/tex]

[tex](e^{i\gamma})^2 - 1 = 2iue^{i\gamma}[/tex]

[tex](e^{i\gamma})^2 - 2iue^{i\gamma} - 1 = 0[/tex]

[tex]e^{i\gamma} = \frac{2iu \pm \sqrt{(2iu)^2 + 4}}{2}[/tex]

[tex]e^{i\gamma} = \frac{2iu \pm \sqrt{4 - 4u^2}}{2}[/tex]

[tex]e^{i\gamma} = \frac{2iu \pm \sqrt{4(1-u^2)}}{2} [/tex]

[tex]e^{i\gamma} = \frac{2iu \pm 2\sqrt{1-u^2}}{2}[/tex]

[tex]e^{i\gamma} = iu \pm \sqrt{1-u^2}[/tex]

[tex]i\gamma = \ln(iu \pm \sqrt{1-u^2})[/tex]

[tex]\gamma = -i\ln(iu \pm \sqrt{1-u^2})[/tex]

(den virker for alle u inni C også)
=) offline
Descartes
Descartes
Innlegg: 447
Registrert: 09/05-2007 21:41

Innlegg Mayhassen » 07/10-2007 11:23

er [tex]i[/tex] alle tall eller hva?
Mayhassen offline
Brahmagupta
Brahmagupta
Brukerens avatar
Innlegg: 374
Registrert: 30/03-2006 17:55
Bosted: Brumunddal

Innlegg mrcreosote » 07/10-2007 11:29

Den imaginære enheten i er (den positive) kvadratrota av -1.

Beviset ser ut til å stemme og kan også presenteres på den ekvivalente formen [tex]\arcsin(x)=i\ln(-ix\pm\sqrt{1-x^2})[/tex].
mrcreosote offline
Guru
Guru
Brukerens avatar
Innlegg: 1995
Registrert: 10/10-2006 19:58

Innlegg =) » 07/10-2007 14:50

jeg pleier å skrive

[tex]\arcsin(x) = -i\ln(ix \pm \sqrt{1-x^2}) + 2\pi n[/tex],

og hvis det skal være en funksjon pleier jeg og velge

[tex]\arcsin(x) = -i\ln(ix + \sqrt{1-x^2})[/tex]

og som mrcreosote sa, så er i et tall man har definert som kvadratroten av -1.
=) offline
Descartes
Descartes
Innlegg: 447
Registrert: 09/05-2007 21:41

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 2 gjester