Kan noen hjelpe meg litt? :)

Her kan du stille spørsmål om oppgaver i matematikk på ungdomsskole og barneskole nivå. Alle som føler at de kan bidra er velkommen til å svare.

Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

ELGU6
Pytagoras
Pytagoras
Posts: 13
Joined: 09/10-2008 13:47

Regn ut og skriv så enkelt som mulig:
2(a-3)+(2a+1)[sup]2[/sup]-(a-1)[sup]2[/sup]-5(a+1)(a-1)
meCarnival
Riemann
Riemann
Posts: 1686
Joined: 07/09-2007 19:12
Location: Trondheim

[tex](a+b)^2 = a^2 + 2ab + b^2[/tex]
[tex](a-b)^2 = a^2 - 2ab + b^2[/tex]

[tex](a+b)(a-b) = a^2 - b^2[/tex]

Se om du kommer noe lengre nå og vis oss hvor du stopper opp hen så skal vi hjelpe deg derfra :D...
Høgskolen i Sør-Trøndelag, Logistikkingeniør
Ingeniørmatematikk IV
ELGU6
Pytagoras
Pytagoras
Posts: 13
Joined: 09/10-2008 13:47

2*a-2*3+2a[sup]2[/sup]+2*2a*1+1-a[sup]2[/sup]-2*a*1+1-5*a[sup]2[/sup]-1

er det sånn?
meCarnival
Riemann
Riemann
Posts: 1686
Joined: 07/09-2007 19:12
Location: Trondheim

Blir (2a)^2 og sjekk over litt fortegn... når det står minus foran så skifter alt inni parentesen fortegn til det omvendte...
Høgskolen i Sør-Trøndelag, Logistikkingeniør
Ingeniørmatematikk IV
ELGU6
Pytagoras
Pytagoras
Posts: 13
Joined: 09/10-2008 13:47

hva skal svaret bli?
Realist1
Euclid
Euclid
Posts: 1993
Joined: 30/01-2007 20:39

Det finner du vel ut av selv. Så kan vi si om det er riktig eller galt. :)
ELGU6
Pytagoras
Pytagoras
Posts: 13
Joined: 09/10-2008 13:47

jeg får -1+4a-4a[sup]2[/sup]
Realist1
Euclid
Euclid
Posts: 1993
Joined: 30/01-2007 20:39

Det er ikke helt riktig, men du er veldig, veldig nærmt.

[tex]-2a^2 + 8a - 1[/tex] skal være riktig.

Har du kanskje en fortegnsfeil på et av 2a-leddene?
ELGU6
Pytagoras
Pytagoras
Posts: 13
Joined: 09/10-2008 13:47

Jeg får det ikke til å stemme, har prøvd alt nå...
kan du skrive utregningen?
meCarnival
Riemann
Riemann
Posts: 1686
Joined: 07/09-2007 19:12
Location: Trondheim

[tex]2(a-3)+(2a+1)^2-(a-1)^2-5(a+1)(a-1)[/tex]

[tex]2a-6+(2a)^2+2 \cdot 2a \cdot 1+1^2-\(a^2-2 \cdot a \cdot 1+(-1)^2\)-5(a^2-1^2)[/tex]

[tex]2a-6+4a^2+4a+1-a^2+2a+1-5a^2+5[/tex]

[tex]-2a^2+8a+1[/tex]

[tex]-\( 2a^2-8a-1 \)[/tex]


Ser at jeg og Realist1 ikke er enig på fortegnet til konstantleddet... Får titte over og se om jeg har gjort noe feil, ellers kan du regne gjennom selv med det som står der også se hva du får opp =)
Høgskolen i Sør-Trøndelag, Logistikkingeniør
Ingeniørmatematikk IV
ELGU6
Pytagoras
Pytagoras
Posts: 13
Joined: 09/10-2008 13:47

jeg hadde gjort feil på (2a+1)[sup]2[/sup], jeg trodde det ble 2a[sup]2[/sup]+1[sup]2[/sup]

Men hvorfor setter du parantes rundt det på slutten og forandrer fortegnene slik at det ikke bare blir -2a[sup]2[/sup]+8a+1 ?
ELGU6
Pytagoras
Pytagoras
Posts: 13
Joined: 09/10-2008 13:47

blir det feil å bare skrive -2a2+8a+1?
meCarnival
Riemann
Riemann
Posts: 1686
Joined: 07/09-2007 19:12
Location: Trondheim

Nei, blir ikke feil, men det er mer ryddig med en positiv høyesteledd... Vane jeg har, men begge tilsier akkurat det samme... Liker å faktorisere hvis det er mulig ;)...
Høgskolen i Sør-Trøndelag, Logistikkingeniør
Ingeniørmatematikk IV
Realist1
Euclid
Euclid
Posts: 1993
Joined: 30/01-2007 20:39

meCarnival wrote:[tex]2(a-3)+(2a+1)^2-(a-1)^2-5(a+1)(a-1)[/tex]

[tex]2a-6+(2a)^2+2 \cdot 2a \cdot 1+1^2-\(a^2-2 \cdot a \cdot 1+(-1)^2\)-5(a^2-1^2)[/tex]

[tex]2a-6+4a^2+4a+1-a^2+2a+1-5a^2+5[/tex]

Ser at jeg og Realist1 ikke er enig på fortegnet til konstantleddet
[tex]-(a-1)^2[/tex] blir vel [tex]-a^2 + 2a - 1[/tex]?


Innsettelse av a=1 i førsteposten gir forresten 5. Ditt svar blir da 7.
meCarnival
Riemann
Riemann
Posts: 1686
Joined: 07/09-2007 19:12
Location: Trondheim

Ja, stemmer... :)
Høgskolen i Sør-Trøndelag, Logistikkingeniør
Ingeniørmatematikk IV
Post Reply