det var en oppg jeg løste på WolfframAlpha
integral (1+x)/(3+2 x+x^2) dx
For the [symbol:integral] (x+1)/(x^2+2 x+3), substitute u = x^2+2 x+3 and du = 2 x+2 dx:
= 1/2 [symbol:integral] 1/u du
The integral of 1/u is log(u):
= (log(u))/2+constant
Substitute back for u = x^2+2 x+3:
= 1/2 log(x^2+2 x+3)+constant
men akkurat det leddet her := ( 1/2 [symbol:integral] 1/u du )skjønner jeg ikke!!!, hvor kommer 1/2 fra ?
kan noen plz forklare det ?
Hjelp?
Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga
-
- Euler
- Posts: 5889
- Joined: 26/09-2007 19:35
- Location: Trondheim
- Contact:
[tex]\frac{du}{dx} = 2x + 2 = 2(x+1)[/tex]
[tex]dx = \frac{du}{2(x+1)} = \frac{1}{2} \cdot \frac{1}{x+1} du[/tex]
[tex]dx = \frac{du}{2(x+1)} = \frac{1}{2} \cdot \frac{1}{x+1} du[/tex]