Skriver på engelsk jeg
[tex]a^m=y[/tex]
[tex](a^m)^{\frac{1}{n}}=y^{\frac{1}{n}}[/tex]
as expained earlier here:
http://www.viewdocsonline.com/document/biwlgx
we get (I):
[tex]\sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b}[/tex] (I)
we can write
[tex]\sqrt[n]{a^m}=\sqrt[n]{aa...a}=y[/tex]
where (I) is
[tex]\sqrt[n]{a^m}=\sqrt[n]{a}\sqrt[n]{a}...\sqrt[n]{a}=y[/tex] (I)
vi har [tex]a^{\frac{1}{n}}[/tex] multiplied with itself m times
and
[tex]\sqrt[n]{a}=y^{\frac{1}{m}}[/tex] (II)
from (I) and (II) we get
[tex](\sqrt[n]{a})^m=y=\sqrt[n]{a^m}[/tex]
mth root
[tex]a^{\frac{1}{n}}=((a^m)^{\frac{1}{n}})^{\frac{1}{m}}[/tex]
This should also show that
[tex]a^{\frac{1}{n}}=((a^m)^{\frac{1}{n}})^{\frac{1}{m}}=a^{\frac{m}{nm}}[/tex]
then could one say?
[tex]((a^m)^{\frac{1}{n}})^{\frac{1}{p}}=a^{\frac{m}{np}}[/tex]
lets say p=1
[tex]((a^m)^{\frac{1}{n}})=a^{\frac{m}{n}}[/tex]
Is this valid?
Er dette korrekt?
Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa
-
- Euler
- Posts: 5889
- Joined: 26/09-2007 19:35
- Location: Trondheim
- Contact:
Hva er det du skal vise?
Elektronikk @ NTNU | nesizer
Jeg liker ikke å tenke at
[tex](a^{46})^{\frac{1}{6}}=a^{\frac{46}{6}}=a^{\frac{23}{3}}[/tex]
hadde vært lettere å forholde seg til hele potenser og røtter og bevist at man ved å ta nte rot av et potens uttrykk kunne laget en potensbrøk som over siden hele potenser og røtter går mye lettere opp logisk. Man vet at ved å gange et tall sammen n hele ganger får man noe ganget med seg selv n ganger og ved å ta nte rot vil man få et tall som ganget sammen n ganger gir opprinnelig tall
[tex](a^{46})^{\frac{1}{6}}=a^{\frac{46}{6}}=a^{\frac{23}{3}}[/tex]
hadde vært lettere å forholde seg til hele potenser og røtter og bevist at man ved å ta nte rot av et potens uttrykk kunne laget en potensbrøk som over siden hele potenser og røtter går mye lettere opp logisk. Man vet at ved å gange et tall sammen n hele ganger får man noe ganget med seg selv n ganger og ved å ta nte rot vil man få et tall som ganget sammen n ganger gir opprinnelig tall
ærbødigst Gill