(x^2 + 1)y' + 2xy^2 = 0
Denne likningen er i kapitllet med separable difflkninger, men jeg greier ikke få x'ene og y'ene alene
Difflikning
Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga
-
- Abel
- Posts: 665
- Joined: 27/01-2007 22:55
[tex](x^2 + 1)y^\prime + 2xy^2 = 0 [/tex]
[tex](x^2 + 1)y^\prime = -2xy^2 [/tex]
[tex]\frac{(x^2 + 1)y^\prime }{(x^2 + 1)} = \frac{-2xy^2}{(x^2 + 1)}[/tex]
[tex] y^\prime = \frac{-2xy^2}{(x^2 + 1)}[/tex]
[tex] \frac{y^\prime}{y^2} = \frac{-2xy^2}{(x^2 + 1)y^2}[/tex]
[tex] \frac{y^\prime}{y^2} = \frac{-2x}{(x^2 + 1)}[/tex]
[tex](x^2 + 1)y^\prime = -2xy^2 [/tex]
[tex]\frac{(x^2 + 1)y^\prime }{(x^2 + 1)} = \frac{-2xy^2}{(x^2 + 1)}[/tex]
[tex] y^\prime = \frac{-2xy^2}{(x^2 + 1)}[/tex]
[tex] \frac{y^\prime}{y^2} = \frac{-2xy^2}{(x^2 + 1)y^2}[/tex]
[tex] \frac{y^\prime}{y^2} = \frac{-2x}{(x^2 + 1)}[/tex]