Ligningsuttrykk

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga

Post Reply
fishermandfriends
Fibonacci
Fibonacci
Posts: 4
Joined: 01/10-2011 10:09
Location: Vestlandet

y^2 =1- x blir det det samme som y =(1-x) (1-x) ???
Janhaa
Boltzmann
Boltzmann
Posts: 8552
Joined: 21/08-2006 03:46
Location: Grenland

[tex]y^2 =1- x [/tex]
dvs
[tex]y\neq (1-x) (1-x) [/tex]
============
men
[tex]y =\pm\sqrt{1- x}[/tex]
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
angileena
Fibonacci
Fibonacci
Posts: 1
Joined: 16/10-2012 11:33

Nice surprise about this shorter form. Can you tell us what it is you are talking/writing about?
Has any info. about this shorter form been posted before (and i just missed it)?
:roll: :idea:
Aleks855
Rasch
Rasch
Posts: 6874
Joined: 19/03-2011 15:19
Location: Trondheim
Contact:

angileena wrote:Nice surprise about this shorter form. Can you tell us what it is you are talking/writing about?
Has any info. about this shorter form been posted before (and i just missed it)?
:roll: :idea:
I'm not entirely sure what you're referring to with "the shorter form", but in this case, we want to solve the equation with respect to y, so given [tex]y^2 = 1-x[/tex], we want to take the square root of both sides, giving us:

[tex]\sqrt{y^2} = \pm\sqrt{1-x}[/tex]

Then, taking the square root of a quadratic term leaves us with a first-degree term.

[tex]y = \pm\sqrt{1-x}[/tex]

The [tex]\pm[/tex] sign is adopted on the right-hand side because [tex](1-x)^2 \ = \ (-(1-x))^2[/tex], because a negative squared term will always yield the same result as the positive squared term. For instance [tex]3^2 \ = \ (-3)^2[/tex]
Image
Post Reply