Finne uttrykk ut i fra fortegnslinje (oppg. 1.303 cosinusR1)

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga

Post Reply
sumsar22

Jeg sliter litt med denne oppgaven:

Et rasjonalt uttrykk f(x) er slik at f(0)=2.
Bestem f(x) når f har fortegnslinja

a) _______1___________2__________>
_________0_ _ _ _ _ _ _><__________

b) _______-4____________2________>
_ _ _ _ _ _ 0 ___________><_ _ _ _ _

Enn så lenge har jeg bare prøvd meg på a).
Jeg forstår at et rasjonalt uttrykk skrives på formen p(x)/q(x), og at p(0)/q(0)=2.
Jeg vet også ar f(1)=0, og at q(x) inneholder faktoren (x-2) ettersom grafen har et bruddpuntk for x=2.
Men videre kommer jeg meg ikke...
Er de noen som har en grei fremmgangsmåte?

På forhånd takk! :D
Lektorn
Riemann
Riemann
Posts: 1630
Joined: 26/05-2014 22:16

f(1)=0 forteller at telleren er null når x=1.
sumsar22

Lektorn wrote:f(1)=0 forteller at telleren er null når x=1.
Ja, det skjønner jeg også, men jeg kommer meg ikke videre likevel... :|
Lektorn
Riemann
Riemann
Posts: 1630
Joined: 26/05-2014 22:16

OK, da må telleren være av formen $a(x-1)$, så da må du prøve å finne konstanten $a$. Da kommer siste sammenheng inn i bildet nemlig at $f(0) = 2$.
sumsar22

Okei, så dette er det jeg kommer frem til:

f(x)=P(x)/Q(x)

f(1)=0 => P(1)=0 => P(x)=a(x-1)

f(2) => brøken eksisterer ikke => Q(x)=b(x-2)

f(0) = 2 => P(0)/Q(0)=2 => a(0-1)/b(0-2)=2 => -a/-2b = 2 => a=4b


Og da får jeg:

f(x) = 4b(x-1)/b(x-2) = 4(x-1)/(x-2)


Dette stemmer med fasiten :D
Tusen takk!
:mrgreen:
Post Reply