1) ║w║=<w,w>[sup]1/2[/sup] = <(-1,3),(-1,3)> = (3*(-1)*(-1) + 2*3*3)[sup]1/2[/sup] = (3 + 18)[sup]1/2[/sup] = [rot][/rot]21.
2) Vha. av aksiomene for indreprodukt får man at
(1) ║u + v║[sup]2[/sup] = <u + v,u + v> = <u,u> + 2<u,v> + <v,v>,
(2) ║u - v║[sup]2[/sup] = <u - v,u - v> = <u,u> - 2<u,v> + <v,v>.
Trekker en (2) fra (1) og deler differansen med 4, blir resultatet
<u,v> = (1/4)║u + v║[sup]2[/sup] - (1/4)║u - v║[sup]2[/sup].
Indreprodukt 2
Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa
Takker, jeg kan jo følge opp med en b) oppgave på 1):
-the innerproduct generated by the matrix
A =
Kjenner til <u,v> = u[sup]T[/sup]A[sup]T[/sup]Av =
Men hva gjør jeg nå? Kan ikke helt å gange en 1x2 med en 2x2, og så 2x2 med en 1x2 matrise 
-the innerproduct generated by the matrix
A =
Code: Select all
1 2
-1 3
Code: Select all
u1 u2 * 1 -1 * 1 2 * v1
2 3 -1 3 v2

-
- Over-Guru
- Posts: 1686
- Joined: 03/10-2005 12:09
A*A[sup]T[/sup] = [.2 .. -1]
. . . . . . [-1 . 13]
u*A*A[sup]T[/sup] = [u[sub]1[/sub] u[sub]2[/sub] ]*[2 . . -1] = [2u[sub]1[/sub] – u[sub]2[/sub] . . . - u[sub]1[/sub] + 13u[sub]2[/sub]]
. . . . . . . . . . . . . . . [-1 . 13]
<u,v>
= u*A*A[sup]T[/sup]*v
= [2u[sub]1[/sub] – u[sub]2[/sub] . . . - u[sub]1[/sub] + 13u[sub]2[/sub]] * [v[sub]1[/sub]]
. . . . . . . . . . . . . . . . . . . . . . . . [v[sub]2[/sub]]
= (2u[sub]1[/sub] – u[sub]2[/sub])v[sub]1[/sub] + (- u[sub]1[/sub] + 13u[sub]2[/sub])v[sub]2[/sub]
= 2u[sub]1[/sub]v[sub]1[/sub] – u[sub]2[/sub]v[sub]1[/sub] – u[sub]1[/sub]v[sub]2[/sub] + 13u[sub]2[/sub]v[sub]2[/sub].
. . . . . . [-1 . 13]
u*A*A[sup]T[/sup] = [u[sub]1[/sub] u[sub]2[/sub] ]*[2 . . -1] = [2u[sub]1[/sub] – u[sub]2[/sub] . . . - u[sub]1[/sub] + 13u[sub]2[/sub]]
. . . . . . . . . . . . . . . [-1 . 13]
<u,v>
= u*A*A[sup]T[/sup]*v
= [2u[sub]1[/sub] – u[sub]2[/sub] . . . - u[sub]1[/sub] + 13u[sub]2[/sub]] * [v[sub]1[/sub]]
. . . . . . . . . . . . . . . . . . . . . . . . [v[sub]2[/sub]]
= (2u[sub]1[/sub] – u[sub]2[/sub])v[sub]1[/sub] + (- u[sub]1[/sub] + 13u[sub]2[/sub])v[sub]2[/sub]
= 2u[sub]1[/sub]v[sub]1[/sub] – u[sub]2[/sub]v[sub]1[/sub] – u[sub]1[/sub]v[sub]2[/sub] + 13u[sub]2[/sub]v[sub]2[/sub].