[tex]AD=\sqrt{(\frac{a+(a×\sqrt{3})}{4})^2+(\frac{a+(a×\sqrt{3})}{2})^2}[/tex]
Regn ut bruk
Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa
-
matteteddy
- Cayley

- Posts: 62
- Joined: 14/12-2015 11:16
Hei noen som har lyst å forklare hvordan man regner ut denne brøken under?
[tex]AD=\sqrt{(\frac{a+(a×\sqrt{3})}{4})^2+(\frac{a+(a×\sqrt{3})}{2})^2}[/tex]
[tex]AD=\sqrt{(\frac{a+(a×\sqrt{3})}{4})^2+(\frac{a+(a×\sqrt{3})}{2})^2}[/tex]
[tex]\left(\frac{a+(a\sqrt{3})}{4}\right)^2 = \frac{1}{4}\left(\frac{a(1+\sqrt{3})}{2}\right)^2[/tex]
Altså får du:
[tex]AD = \sqrt{\left(\frac{a(1+\sqrt{3})}{2}\right)^2\left(1+\frac{1}{4}\right)} = \frac{\sqrt{5}}{2}\cdot\frac{a(1+\sqrt{3})}{2} = \frac{\sqrt{5}}{4}a(1+\sqrt{3})[/tex]
Altså får du:
[tex]AD = \sqrt{\left(\frac{a(1+\sqrt{3})}{2}\right)^2\left(1+\frac{1}{4}\right)} = \frac{\sqrt{5}}{2}\cdot\frac{a(1+\sqrt{3})}{2} = \frac{\sqrt{5}}{4}a(1+\sqrt{3})[/tex]



