Ulikhet og absoluttverdi

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Post Reply
Guest

Hei!

Er det noen som kan forklare meg hvordan jeg regner ut ulikheter med absoluttverdi. Jeg skal regne ut det her, men skjønner ikke hvordan jeg skal gå frem.

Ix+1I > Ix+2I

Selv tenkte jeg å opphøye i andre, men jeg ser at det blir feil, da jeg vil få x-x=1 --> 0=1
Guest

Jeg prøver meg:



[tex]\left | x+1 \right |\Rightarrow x+1\geq 0\Leftrightarrow x\geq -1[/tex]
[tex]\left | x+2 \right |\Rightarrow x+2\geq 0\Leftrightarrow x\geq -2[/tex]
[tex]x+2<0\Leftrightarrow x<-2\Leftrightarrow \left | x+2 \right |=-(x+2)[/tex]
Altså vi skjekker kravene:
[tex]x<-2\vee -2\leq x\vee x<-1\vee x\geq -1[/tex]
[tex]\left | x+1 \right |>\left | x+2 \right |\Leftrightarrow -(x+1)>-(x+2)[/tex]
[tex]\forall\mathbb{R}[/tex]
[tex]x<-\frac{3}{2}[/tex]
Guest

x<−3/2 stemmer med fasiten

Men jeg skjønner ikke helt hvordan du kommer til dette svaret fra -(x+1)>-(x+2), får jeg får fortsatt 0>-1 som svar
DennisChristensen
Grothendieck
Grothendieck
Posts: 826
Joined: 09/02-2015 23:28
Location: Oslo

Gjest wrote:Hei!

Er det noen som kan forklare meg hvordan jeg regner ut ulikheter med absoluttverdi. Jeg skal regne ut det her, men skjønner ikke hvordan jeg skal gå frem.

Ix+1I > Ix+2I

Selv tenkte jeg å opphøye i andre, men jeg ser at det blir feil, da jeg vil få x-x=1 --> 0=1
Du kan helt fint opphøye i annen.

$|x+1| > |x+2| \\
(x+1)^2 > (x+2)^2 \\
x^2 +2x +1 > x^2 + 4x + 4 \\
-2x > 3 \\
x < -\frac{3}{2}$.
Post Reply