til
Oppgave deriver :
[tex](x+1)^4\times (x-2)^2[/tex]
Kladd: [tex](x+1)^4[/tex]
[tex]u=x+1[/tex] [tex]{}'u = 1[/tex]
[tex]g(u)= u^4[/tex] [tex]{g(u)}'= 4U^3[/tex]
Del regning: [tex]{}'(x+1)^4= 4\times (x+1)^3\times 1 = 4(x+1)^3[/tex]
Kladd: [tex](x-2)^2[/tex]
[tex]u= x-2[/tex] [tex]{u}'= 1[/tex]
[tex]g(u)= u^2[/tex] [tex]{'g(u)} = 2u[/tex]
Del regning: [tex]{(x-2)}'= 2\times (x-2)\times 1 = 2(x-2)[/tex]
[tex]{u}'\times v+u\times {v}'[/tex]
[tex]4(x+1)^3\times (x-2)+(x+1)^4\times 2(x-2)[/tex] Tips: Finn felles faktorer
[tex]2(x+1)^3(x-2)(2(x-2)+(x+1))[/tex]
Del regning: [tex](2(x-2)+(x+1)) = (2x-4+x+1) = (3x-3) = 3(x-1)[/tex]
[tex]2\times3(x+1)^3(x-2)(x-1)[/tex]
Endelig svar

[tex]=6(x+1)^3(x-2)(x-1)[/tex]