funksjoner

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga

Guest

Hvis jeg har en graf

og har punkte på grafen, og skal prøve å avgjøre om [tex]f'(x)>f''(x)[/tex] i puntet. Hva er egentlig kriteriet man skal se på?

[tex]f''(x)[/tex] er jo den deriverte til [tex]f'(x)[/tex], så forteller den hvor [tex]f'(x)[/tex] har ekstremalpunkter som videre forteller hvor [tex]f(x)[/tex] har vendepunkter?


Grafen på bildet er fjerdegradspolynomfunksjon.

men hvordan skal jeg avgjjøre at [tex]f'(x)>f''(x)[/tex]

takk på forhånd
Aleks855
Rasch
Rasch
Posts: 6874
Joined: 19/03-2011 15:19
Location: Trondheim
Contact:

Hva er $f(x)$? Har du mulighet til å regne ut $f'(x)$ og $f''(x)$?

Eller er det meninga du ikke skal gjøre det?
Image
Guest

Aleks855 wrote:Hva er $f(x)$? Har du mulighet til å regne ut $f'(x)$ og $f''(x)$?

Eller er det meninga du ikke skal gjøre det?
Nope, har bare bilde av en fjerdegradsfunksjon som har 4 nullpunkter, og 3 ekstremalpunkter.

Skulle finne ut for hvilken x-verdi [tex]f(x)[/tex] hadde ekstremalpunkter, med andre ord hvor nullpunktene til [tex]f'(x)[/tex]. deretter sjulle jeg finne ut hvor [tex]f(x)[/tex] vokser raskest, med andre ord --> ekstremalpunktene til [tex]f'(x)[/tex]. deretter spør oppgaven avgjør hvor [tex]f'(x)>f''(x)[/tex] i punktene. men hva er kriteriet?, jeg skjønner at hvis du putter x-verdien inn i den deriverte skal den være større enn i den andrederiverte, men hvordan skal jeg avgjøre d uten funksjon?
mingjun

Du tegner grafen for $f'(x)$, noe som du kan gjøre fordi du kan finne ekstremalpunktene og infleksjonspunktene til $f(x)$. Det samme kan du gjøre for $f''(x)$. Når du har gjort det, kan du observere grafisk de to punktene når $f'(x)$ krysser $f''(x)$, og det er når $f'(x)-f''(x)$ går fra positiv til negativ eller omvendt.
Guest

mingjun wrote:Du tegner grafen for $f'(x)$, noe som du kan gjøre fordi du kan finne ekstremalpunktene og infleksjonspunktene til $f(x)$. Det samme kan du gjøre for $f''(x)$. Når du har gjort det, kan du observere grafisk de to punktene når $f'(x)$ krysser $f''(x)$, og det er når $f'(x)-f''(x)$ går fra positiv til negativ eller omvendt.
klarer ikke dette... skjønner ikke hva som egentlig man sa se etter. betyr det krysningen på grafen til den deriverte er større enn på den andrederiverte i samme punkt?
Aleks855
Rasch
Rasch
Posts: 6874
Joined: 19/03-2011 15:19
Location: Trondheim
Contact:

Har du mulighet til å poste bildet av funksjonen som er avbildet?
Image
Guest

Aleks855 wrote:Har du mulighet til å poste bildet av funksjonen som er avbildet?

Boken ligger på skolen nå,, men jeg fikk bare vite 6 punkter på grafen

det var avbildet [tex]f'(x)[/tex], jeg vil si at [tex]f'(x)=-\frac{5}{9}(x-1)(x+2)(x+0.5)(x-2.7)[/tex]
stemmer sånn noenlunde med bildet,,


men har ingen peiling hvordan jeg skal avgjøre at[tex]f'(x)>f''(x)[/tex]. skal prøve å låne boken av kompisen i morgen, så kan jeg legge et bilde. men har du noen tanker sånn i første omgang?


takk!
Aleks855
Rasch
Rasch
Posts: 6874
Joined: 19/03-2011 15:19
Location: Trondheim
Contact:

Ja, jeg ville skissert den samme funksjonen på et ark, og deretter skissert $f'(x)$ ut fra hvordan $f(x)$ ser ut. Og tilsvarende for $f''(x)$. Deretter er det bare å gjøre det på øyemål.

Jeg ser ikke for meg at det er meninga du skal være super-eksakt når du ikke har en eksakt funksjon å gå etter.
Image
Guest

Aleks855 wrote:Ja, jeg ville skissert den samme funksjonen på et ark, og deretter skissert $f'(x)$ ut fra hvordan $f(x)$ ser ut. Og tilsvarende for $f''(x)$. Deretter er det bare å gjøre det på øyemål.

Jeg ser ikke for meg at det er meninga du skal være super-eksakt når du ikke har en eksakt funksjon å gå etter.


bildet i boka viste grafen til [tex]f'(x)[/tex], men jeg skjønner fremdeles ikke hvordan jeg skal avgjøre om [tex]f'(x)> f''(x)[/tex] i punktene A,B,C,D,E,F ut i fra grafen til [tex]f'(x)[/tex]. Kan man se dette visuelt eller noe? Eller er det umulig å avgjøre dette, uten å lage seg grafen til [tex]f''(x)[/tex]. La oss si jeg har den da, men hvordan skal jeg gå frem? skal jeg sette x koordinatene til punktene inn i henholdsvis [tex]f'(x)[/tex] og [tex]f''(x)[/tex] og se om [tex]f'(x)>f''(x)[/tex] stemmer?

:oops: :oops: :oops:
mingjun
Cayley
Cayley
Posts: 91
Joined: 18/11-2016 21:13
Location: Det projektive planet

Gjest wrote:
Aleks855 wrote:Ja, jeg ville skissert den samme funksjonen på et ark, og deretter skissert $f'(x)$ ut fra hvordan $f(x)$ ser ut. Og tilsvarende for $f''(x)$. Deretter er det bare å gjøre det på øyemål.

Jeg ser ikke for meg at det er meninga du skal være super-eksakt når du ikke har en eksakt funksjon å gå etter.


bildet i boka viste grafen til [tex]f'(x)[/tex], men jeg skjønner fremdeles ikke hvordan jeg skal avgjøre om [tex]f'(x)> f''(x)[/tex] i punktene A,B,C,D,E,F ut i fra grafen til [tex]f'(x)[/tex]. Kan man se dette visuelt eller noe? Eller er det umulig å avgjøre dette, uten å lage seg grafen til [tex]f''(x)[/tex]. La oss si jeg har den da, men hvordan skal jeg gå frem? skal jeg sette x koordinatene til punktene inn i henholdsvis [tex]f'(x)[/tex] og [tex]f''(x)[/tex] og se om [tex]f'(x)>f''(x)[/tex] stemmer?

:oops: :oops: :oops:
Bare tenk på funksjoner på en graf generelt. Hvordan vet du at den ene funksjonen er større enn den andre ved et punkt?
Guest

mingjun wrote:
Gjest wrote:
Aleks855 wrote:Ja, jeg ville skissert den samme funksjonen på et ark, og deretter skissert $f'(x)$ ut fra hvordan $f(x)$ ser ut. Og tilsvarende for $f''(x)$. Deretter er det bare å gjøre det på øyemål.

Jeg ser ikke for meg at det er meninga du skal være super-eksakt når du ikke har en eksakt funksjon å gå etter.


bildet i boka viste grafen til [tex]f'(x)[/tex], men jeg skjønner fremdeles ikke hvordan jeg skal avgjøre om [tex]f'(x)> f''(x)[/tex] i punktene A,B,C,D,E,F ut i fra grafen til [tex]f'(x)[/tex]. Kan man se dette visuelt eller noe? Eller er det umulig å avgjøre dette, uten å lage seg grafen til [tex]f''(x)[/tex]. La oss si jeg har den da, men hvordan skal jeg gå frem? skal jeg sette x koordinatene til punktene inn i henholdsvis [tex]f'(x)[/tex] og [tex]f''(x)[/tex] og se om [tex]f'(x)>f''(x)[/tex] stemmer?

:oops: :oops: :oops:
Bare tenk på funksjoner på en graf generelt. Hvordan vet du at den ene funksjonen er større enn den andre ved et punkt?
den ligger vel over den andre funksjonen . altså samme x-verdi tilsvarer en høyere y-verdi?
mingjun
Cayley
Cayley
Posts: 91
Joined: 18/11-2016 21:13
Location: Det projektive planet

Uten navn.jpg
Uten navn.jpg (60.92 KiB) Viewed 3290 times
Gjest wrote:
den ligger vel over den andre funksjonen . altså samme x-verdi tilsvarer en høyere y-verdi?
Nettopp. Når er da f.eks. andregradsfunksjonen i denne grafen større enn tredjegradsfunksjonen?
Guest

Den er vel større når [tex]\infty \leq x<-1 \ U 0.5<x<1.5[/tex]
?
mingjun
Cayley
Cayley
Posts: 91
Joined: 18/11-2016 21:13
Location: Det projektive planet

Gjest wrote:Den er vel større når [tex]\infty \leq x<-1 \ U 0.5<x<1.5[/tex]
?

Eller [tex]\infty \leq x<-1 \ U 0.5<x<\infty[/tex] da, men det er mer eller mindre tankegangen bak oppgaven. Tegn $f'(x)$, som er en tredjegradspolynom, og tegn $f''(x)$, som er en andregradspolynom. Så finner du ut ved øyemål når $f''(x)>f'(x)$
Post Reply