Show that the matrix M has linearly indepentdent columns if and only if at least two of the numbers x[sub]1[/sub], x[sub]2[/sub], .., x[sub]n[/sub] are distinct.
M =
|1 x[sub]1[/sub]|
|1 x[sub]2[/sub]|
|.. .. |
|1 x[sub]n[/sub]|
Algebra, lin. uavhengighet
Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa
-
- Over-Guru
- Posts: 1686
- Joined: 03/10-2005 12:09
La v[sub]1[/sub] = [1 1 ... 1][sup]T[/sup] og v[sub]2[/sub] = [x[sub]1[/sub] x[sub]2[/sub] ... x[sub]n[/sub]][sup]T[/sup] være kolonnevektorene i nx2-matrisa M. Den ekvivalensen vi skal bevise tilsvarer ekvivalensen P <=> Q der
P: v[sub]1[/sub] og v[sub]2[/sub] er lineært avhengige.
Q: x[sub]1[/sub] = x[sub]2[/sub] = ... = x[sub]n[/sub].
Disse to utsagnene er ekvivalente fordi vi har følgende rekke av ekvivalente utsagn:
Q er sann
v[sub]2[/sub] = [x[sub]1[/sub] x[sub]1[/sub] ... x[sub]1[/sub]][sup]T[/sup]
v[sub]2[/sub] = x[sub]1[/sub][1 1 ... 1]
v[sub]2[/sub] = x[sub]1[/sub] v[sub]1[/sub]
P er sann
P: v[sub]1[/sub] og v[sub]2[/sub] er lineært avhengige.
Q: x[sub]1[/sub] = x[sub]2[/sub] = ... = x[sub]n[/sub].
Disse to utsagnene er ekvivalente fordi vi har følgende rekke av ekvivalente utsagn:
Q er sann
v[sub]2[/sub] = [x[sub]1[/sub] x[sub]1[/sub] ... x[sub]1[/sub]][sup]T[/sup]
v[sub]2[/sub] = x[sub]1[/sub][1 1 ... 1]
v[sub]2[/sub] = x[sub]1[/sub] v[sub]1[/sub]
P er sann