Logaritmelikning

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga

Post Reply
S1matte199x
Pytagoras
Pytagoras
Posts: 14
Joined: 09/09-2017 17:43

lg(x + 1)= 5

Hvordan løser jeg denne oppgaven?
Aleks855
Rasch
Rasch
Posts: 6874
Joined: 19/03-2011 15:19
Location: Trondheim
Contact:

$10^{\lg(x+1) } = 10^5$

Ser du veien videre herfra?
Image
S1matte199x
Pytagoras
Pytagoras
Posts: 14
Joined: 09/09-2017 17:43

Nei, jeg skjønte det ikke.. Jeg gjorde en oppgave som var akkurat som denne, men uten parentes. Bare skjønner ikke hvordan oppgaven skal løses når det er parentes i den. Skjønte heller ikke hvordan du fikk 10lg?
Aleks855
Rasch
Rasch
Posts: 6874
Joined: 19/03-2011 15:19
Location: Trondheim
Contact:

Jeg "fikk" ikke det. Ideen er å få x alene på den ene siden av likhetstegnet. Og det første steget vil være å få x ut av logaritme-uttrykket.

Gitt $\lg(x+1) = 5$ så kan vi bruke logaritmeregelen som sier at $10^{\lg (x)} = x$. Altså, det som står inni logaritme-uttrykket, blir stående alene, hvis vi setter det som eksponent på 10.

Derfor får vi på venstre side $10^{\lg(x+1)} = x+1$ og på høyre side får vi $10^5$.

Da står vi igjen med $x+1 = 10^5$ som burde være trivielt.

Anbefaler å ta et grundig oppgjør med logaritmer. Jeg har laget en del videoer her, som forklarer hva logaritmer er, hvilke regneregler vi har, og hvordan vi løses blant annet slike oppgaver.

http://udl.no/p/r1-matematikk/kapittel-2-logaritmer
Image
S1matte199x
Pytagoras
Pytagoras
Posts: 14
Joined: 09/09-2017 17:43

Tror jeg klarte det :) Takk for hjelpen

lg(x + 1) = 5
10lg(x + 1) = 10^5
x = 100 000 - 1
x = 99 999
Aleks855
Rasch
Rasch
Posts: 6874
Joined: 19/03-2011 15:19
Location: Trondheim
Contact:

Det ser fint ut ja!
Image
Post Reply