Ulikhet

Her kan brukere av forum utfordre hverandre med morsomme oppgaver og nøtter man ønsker å dele med andre. Dette er altså ikke et sted for desperate skrik om hjelp, de kan man poste i de andre forumene, men et sted for problemløsing på tvers av trinn og fag.

Ulikhet

Innlegg Kay » 08/12-2017 00:14

Anta at [tex]f'[/tex] er integrerbar over intervallet [tex][0,1][/tex] og at [tex]f(0)=0[/tex]. Vis at [tex]\forall \ x\in [0,1][/tex] så er

[tex]|f(x)|\leq\sqrt{\int_{0}^{1}|f'|^2}[/tex]
[tex]e=\pi=3[/tex]
Kay offline
Galois
Galois
Innlegg: 559
Registrert: 13/06-2016 18:23

Re: Ulikhet

Innlegg mingjun » 08/12-2017 13:47

Dette følger vel direkte fra Cauchy Schwartz (i engelform) i integralform.
mingjun offline
Cayley
Cayley
Innlegg: 91
Registrert: 18/11-2016 21:13
Bosted: Det projektive planet

Re: Ulikhet

Innlegg Gustav » 11/12-2017 16:01

Kay skrev:Anta at [tex]f'[/tex] er integrerbar over intervallet [tex][0,1][/tex] og at [tex]f(0)=0[/tex]. Vis at [tex]\forall \ x\in [0,1][/tex] så er

[tex]|f(x)|\leq\sqrt{\int_{0}^{1}|f'|^2}[/tex]


Som mingjun skrev, så følger det av Schwarz' ulikhet

$|\int_0^x f \cdot g| \leq\sqrt{\int_0^x |f|^2 \int_0^x |g|^2}$. Sett $g=1$ og la $f\to f'$, så for $x\in [0,1]$ er

$|f(x)|=|\int_0^x f'| \leq\sqrt{\int_0^x |f'|^2 \int_0^x 1}= \sqrt{x }\sqrt{\int_0^x |f'|^2 }\leq \sqrt{\int_0^x |f'|^2}\leq \sqrt{\int_0^1 |f'|^2}$,

der den siste ulikheten er gyldig fordi integranden er ikkenegativ.
Gustav offline
Tyrann
Tyrann
Brukerens avatar
Innlegg: 4295
Registrert: 12/12-2008 12:44

Re: Ulikhet

Innlegg Kay » 11/12-2017 16:17

Gustav skrev:
Kay skrev:Anta at [tex]f'[/tex] er integrerbar over intervallet [tex][0,1][/tex] og at [tex]f(0)=0[/tex]. Vis at [tex]\forall \ x\in [0,1][/tex] så er

[tex]|f(x)|\leq\sqrt{\int_{0}^{1}|f'|^2}[/tex]


Som mingjun skrev, så følger det av Schwarz' ulikhet

$|\int_0^x f \cdot g| \leq\sqrt{\int_0^x |f|^2 \int_0^x |g|^2}$. Sett $g=1$ og la $f\to f'$, så for $x\in [0,1]$ er

$|f(x)|=|\int_0^x f'| \leq\sqrt{\int_0^x |f'|^2 \int_0^x 1}= \sqrt{x }\sqrt{\int_0^x |f'|^2 }\leq \sqrt{\int_0^x |f'|^2}\leq \sqrt{\int_0^1 |f'|^2}$,

der den siste ulikheten er gyldig fordi integranden er ikkenegativ.


Var Schwarz' som var tanken her, ja. Fint.
[tex]e=\pi=3[/tex]
Kay offline
Galois
Galois
Innlegg: 559
Registrert: 13/06-2016 18:23

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 8 gjester