complex integration

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Post Reply
Janhaa
Boltzmann
Boltzmann
Posts: 8552
Joined: 21/08-2006 03:46
Location: Grenland

Noen som har forslag til denne:

[tex]I=\int_{|z|=1/2}\frac{z}{\cos(\frac{1}{z})}\,dz[/tex]
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Gustav
Tyrann
Tyrann
Posts: 4563
Joined: 12/12-2008 12:44

Janhaa wrote:Noen som har forslag til denne:

[tex]I=\int_{|z|=1/2}\frac{z}{\cos(\frac{1}{z})}\,dz[/tex]
Substitusjonen $w=\frac{1}{z}$ gir $dw=-\frac{dz}{z^2}=-w^2dz$, så $dz=-\frac{dw}{w^2}$, og vi får

$\oint_{|w|=2} \frac{dw}{w^3\cos w}$ som har tre poler på innsiden av $|w|=2$.

Merk at minustegnet forsvinner pga at det lukkede integralet må reverseres etter substitusjonen.
Janhaa
Boltzmann
Boltzmann
Posts: 8552
Joined: 21/08-2006 03:46
Location: Grenland

Gustav wrote:
Janhaa wrote:Noen som har forslag til denne:
[tex]I=\int_{|z|=1/2}\frac{z}{\cos(\frac{1}{z})}\,dz[/tex]
Substitusjonen $w=\frac{1}{z}$ gir $dw=-\frac{dz}{z^2}=-w^2dz$, så $dz=-\frac{dw}{w^2}$, og vi får
$\oint_{|w|=2} \frac{dw}{w^3\cos w}$ som har tre poler på innsiden av $|w|=2$.
Merk at minustegnet forsvinner pga at det lukkede integralet må reverseres etter substitusjonen.
takker, (fikk den sånn halvveis til sjøl å).
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Post Reply