Pyramide

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga

Post Reply
geir72

Spurt tidligere men finner ikke posten. Poster her igjen .

Jeg har et tetraeder. Volumet er= 139/6 og grunnflata har da areal lik 14,85. Finn høyden fra topp ned på trekanten abc
Jeg skjønner virkelig ikke hvorfor jeg ikke bare kan sette inn i V=1/6*G*h slik at jeg ender opp med 9.36. Dette blir feil i fasit. fasiten er 4.68.
Janhaa
Boltzmann
Boltzmann
Posts: 8552
Joined: 21/08-2006 03:46
Location: Grenland

geir72 wrote:Spurt tidligere men finner ikke posten. Poster her igjen .

Jeg har et tetraeder. Volumet er= 139/6 og grunnflata har da areal lik 14,85. Finn høyden fra topp ned på trekanten abc
Jeg skjønner virkelig ikke hvorfor jeg ikke bare kan sette inn i V=1/6*G*h slik at jeg ender opp med 9.36. Dette blir feil i fasit. fasiten er 4.68.
du har trekanta grunnflate og volum lik:

[tex]V=\frac{G\cdot h}{3}[/tex]
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
geir72

Janhaa wrote:
geir72 wrote:Spurt tidligere men finner ikke posten. Poster her igjen .

Jeg har et tetraeder. Volumet er= 139/6 og grunnflata har da areal lik 14,85. Finn høyden fra topp ned på trekanten abc
Jeg skjønner virkelig ikke hvorfor jeg ikke bare kan sette inn i V=1/6*G*h slik at jeg ender opp med 9.36. Dette blir feil i fasit. fasiten er 4.68.
du har trekanta grunnflate og volum lik:

[tex]V=\frac{G\cdot h}{3}[/tex]
Jeg tok vektorprodukt av grunnflata og ganget dette med 1/2 på grunn av trekantagrunnflate. Da har jeg G, som jeg setter inn i V=1/6*G*h (formel for volum av tetraeder). Hvor kommer denne (G*h)/3 fra?
Aleks855
Rasch
Rasch
Posts: 6874
Joined: 19/03-2011 15:19
Location: Trondheim
Contact:

Gh/3 er den generelle formelen for volumet av en pyramide. Var det det du lurte på, eller var du ute etter et bevis for formelen?
Image
geir72

Aleks855 wrote:Gh/3 er den generelle formelen for volumet av en pyramide. Var det det du lurte på, eller var du ute etter et bevis for formelen?
Det gjelder volum av tetraeder. Jeg har Volum og grunnflata og har i oppgave å regne høyden. I øverste del av teksten står det hvilke verdier jeg har for volum og grunflaten. Problemet er når jeg setter inn i formel V=1/6*G*h så blir det feil, noe jeg ikke har noen anelse om hvorfor?
Aleks855
Rasch
Rasch
Posts: 6874
Joined: 19/03-2011 15:19
Location: Trondheim
Contact:

Ja, du må bruke formelen som Janhaa ga. Altså $\frac13Gh$, og ikke med $\frac16$.
Image
geir72

Aleks855 wrote:Ja, du må bruke formelen som Janhaa ga. Altså $\frac13Gh$, og ikke med $\frac16$.
OK, hvorfor er det egentlig den? lurer på om formelen ut ifra sinusboka er feil da ....
Aleks855
Rasch
Rasch
Posts: 6874
Joined: 19/03-2011 15:19
Location: Trondheim
Contact:

OK, hvorfor er det egentlig den?
Vel, grekerne beviste for lenge siden at dette er formelen for volumet av en pyramide. Det finnes flere måter å bevise det på, hvis du er ute etter å se nøyaktig hvordan resonnementet går. Det ligger forøvrig mye læring i å forstå bevisene også.
lurer på om formelen ut ifra sinusboka er feil da
Jeg vil heller tro at kanskje det er andre sammenhenger som gjør at du prøver å bruke feil formel. Kanskje du blander inn info som ikke er relevant for oppgaven? Slik du har fremstilt oppgaven, så kan vi løse den slik.

Vi har en formel som innebærer volumet av figuren, arealet av grunnflata, og høyda. Og den lyder $V = \frac13 Gh$. Vi er ute etter å isolere høyda, så vi snur formelen, og får $h = \frac{3V}{G}$.

Nå kan vi sette inn verdiene vi vet, $V=139/6$ og $G=14.85$. Vi får da at høyda $h = \frac{3(139/6)}{14.85} \approx 4.68$.
Image
geir72

Aleks855 wrote:
OK, hvorfor er det egentlig den?
Vel, grekerne beviste for lenge siden at dette er formelen for volumet av en pyramide. Det finnes flere måter å bevise det på, hvis du er ute etter å se nøyaktig hvordan resonnementet går. Det ligger forøvrig mye læring i å forstå bevisene også.
lurer på om formelen ut ifra sinusboka er feil da
Jeg vil heller tro at kanskje det er andre sammenhenger som gjør at du prøver å bruke feil formel. Kanskje du blander inn info som ikke er relevant for oppgaven? Slik du har fremstilt oppgaven, så kan vi løse den slik.

Vi har en formel som innebærer volumet av figuren, arealet av grunnflata, og høyda. Og den lyder $V = \frac13 Gh$. Vi er ute etter å isolere høyda, så vi snur formelen, og får $h = \frac{3V}{G}$.

Nå kan vi sette inn verdiene vi vet, $V=139/6$ og $G=14.85$. Vi får da at høyda $h = \frac{3(139/6)}{14.85} \approx 4.68$.
Tror jeg muligens ser feilen min. Da jeg skulle regne ut arealet av grunnflata ganget jeg vektor produktet med 1/2. Denne halve bruker jeg to ganger både her og i 1/6 (altså 1/6*G*h). Derfor skal det bare være en 1/3 når jeg setter inn G i formelen.
Aleks855
Rasch
Rasch
Posts: 6874
Joined: 19/03-2011 15:19
Location: Trondheim
Contact:

Mysteriet løst!
Image
Post Reply