finne y derivert

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

finne y derivert

Innlegg gjest43 » 06/10-2019 21:48

Hei, sliter litt med denne oppgaven

[tex](x(t)^2+y(t)^2+x(t))^2=x(t)^2+y(t)^2[/tex]

på et gitt tidspunkt [tex]t_{0}[/tex] er [tex]x(t_{0})=0[/tex] og [tex]y(t_{0})=1[/tex] og [tex]x'(t_{0})=41[/tex]. Hva er [tex]y'(t_{0})[/tex]?

Har prøvd å regne meg fram, men er usikker på hvordan jeg skal komme meg frem til svaret
gjest43 offline

Re: finne y derivert

Innlegg Emilga » 07/10-2019 17:29

Deriver likningen, og løs for $\dot y$. (Husk å bruke kjerneregelen.)

$$(x^2 + y^2 + x)^2 = x^2 + y^2$$

$$2(x^2 + y^2 + x)(2x \dot x + 2y \dot y + \dot x) = 2x \dot x + 2y \dot y$$

osv...

Helt til

$$\dot y = \frac{x \dot x - (x^2 + y^2 + x)(2x \dot x + \dot x)}{\left( 2(x^2 + y^2 + x)- 1 \right)y}$$

Så putter man inn verdiene på hyøre-siden.
Emilga offline
Poincare
Poincare
Innlegg: 1434
Registrert: 20/12-2006 19:21
Bosted: NTNU

Hvem er i forumet

Brukere som leser i dette forumet: Ingen registrerte brukere og 40 gjester