Valgtre, sannsynlifghet

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga

Post Reply
Nikoline Fælth
Pytagoras
Pytagoras
Posts: 9
Joined: 18/03-2020 10:53

Per og Frank spiller dataspill. På et punkt i spillet kan de velge å gå over én av ti forskjellige bruer. Det er fire bruer som vil bære Per og Frank når de går over, mens det er seks bruer som vil kollapse dersom de forsøker å gå på dem. De velger tilfeldig hver sin bru.
Per velger først. De kan ikke velge samme bru.
a) Lag et valgtre der du setter på alle de aktuelle sannsynlighetene.
b) Finn sannsynligheten for at begge kommer over brua.
c) Finn sannsynligheten for at ingen av dem kommer over.
d) Hva blir sannsynligheten for at nøyaktig én av dem kommer over?
Last edited by Nikoline Fælth on 18/03-2020 12:26, edited 1 time in total.
josi

Nikoline Fælth wrote:Per og Frank spiller dataspill. På et punkt i spillet kan de velge å gå over én av ti forskjellige bruer. Det er fire bruer som vil bære Per og Frank når de går over, mens det er seks bruer som vil kollapse dersom de forsøker å gå på dem. De velger tilfeldig hver sin bru.
Per velger først. De kan ikke velge samme bru.
a) Lag et valgtre der du setter på alle de aktuelle sannsynlighetene.
b) Finn sannsynligheten for at begge kommer over brua.
c) Finn sannsynligheten for at ingen av dem kommer over.
d) Hva blir sannsynligheten for at nøyaktig én av dem kommer over?
Hvilke tanker har du selv gjort deg om hvordan dette skal løses?
Nikoline Fælth
Pytagoras
Pytagoras
Posts: 9
Joined: 18/03-2020 10:53

Til ene siden

4/10 også på de neste grenene 4/10 også 6/10

Til den andre siden

6/10 også på de neste grenee 4/10 også 6/10
josi

Nikoline Fælth wrote:Til ene siden

4/10 også på de neste grenene 4/10 også 6/10

Til den andre siden

6/10 også på de neste grenee 4/10 også 6/10
Her er du godt i gang! Husk at det bare er 9 bruer og velge mellom for Frank.
Guest

Husk at Frank har 9 bruer å velge mellom...Han velger etter Per.
Nikoline Fælth
Pytagoras
Pytagoras
Posts: 9
Joined: 18/03-2020 10:53

Gjest wrote:Husk at Frank har 9 bruer å velge mellom...Han velger etter Per.


Blir det fa 4/9 oh 6/9 istedenfor av 10
Nikoline Fælth
Pytagoras
Pytagoras
Posts: 9
Joined: 18/03-2020 10:53

Gjest wrote:Husk at Frank har 9 bruer å velge mellom...Han velger etter Per.


4/10 6/9

4/10 6/10 4/9 6/9

slik det skal settes opp?
josi

josi wrote:
Nikoline Fælth wrote:Til ene siden

4/10 også på de neste grenene 4/10 også 6/10

Til den andre siden

6/10 også på de neste grenee 4/10 også 6/10
Her er du godt i gang! Husk at det bare er 9 bruer å velge mellom for Frank.
edit
Nikoline Fælth
Pytagoras
Pytagoras
Posts: 9
Joined: 18/03-2020 10:53

Jeg forstår de andre oppgavene, det jeg ikke forstår er hvordan jeg skal sette opp valgtreet, vil noen vise det?
josi

Nikoline Fælth wrote:
Gjest wrote:Husk at Frank har 9 bruer å velge mellom...Han velger etter Per.


4/10 6/9

4/10 6/10 4/9 6/9

slik det skal settes opp?
Mitt forslag:

4/10 6/9

3/9 6/9 4/9 5/9

Hvis Per velger en bro som ikke kollapser, er det bare 3 slike igjen av de 9 resterende broene. Hvis broen Per velger kollapser, vil det være 6 solide broer igjen til Frank og 3 som kollapser.
josi

josi wrote:
Nikoline Fælth wrote:
Gjest wrote:Husk at Frank har 9 bruer å velge mellom...Han velger etter Per.


4/10 6/9

4/10 6/10 4/9 6/9

slik det skal settes opp?

edit
Mitt forslag:

4/10 6/10

3/9 6/9 4/9 5/9


Hvis Per velger en bro som ikke kollapser, er det bare 3 slike igjen av de 9 resterende broene. Hvis broen Per velger, kollapser, vil det være 6 solide broer igjen til Frank og 3 som kollapser.
Nikoline Fælth
Pytagoras
Pytagoras
Posts: 9
Joined: 18/03-2020 10:53

Blir svaret på b) 12/81??

på c) 36/81??
josi

Nikoline Fælth wrote:Blir svaret på b) 12/81??

på c) 36/81??
b) Hva er sannsynligheten for at begge kommer over?

$A =$ Broen Per velger, kollapser ikke,

$B =$ Broen Frank velger, kollapser ikke.

$P(A\cap B) = P(A) * P(B|A) = \frac {4}{10} * \frac{3}{9} = \frac{12}{90} \approx 0.13$
indianawenaas
Fibonacci
Fibonacci
Posts: 2
Joined: 06/05-2020 21:09

Fant du ut oppgaven? kanskje du vil sende den? jeg sliter...
Post Reply