Kvadratrot

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga

jannepanne

Aleks855 wrote:https://udl.no/v/matematikk-blandet/alg ... tninga-144

Se denne videoen. Hvis du står fast etter det, si fra.
Hei!

Jeg ser på samme oppgave (√3-1)(√3+1)

Jeg har sett videoen og regner meg fint frem til svaret, men spørsmålet mitt er:

vil svaret være: √3^2 + √3 - √3 - 1 eller vil det være √9 + √3 - √3 - 1

Jeg skjønner at det for så vidt står det samme, men hva ville være riktig å skrive?
Aleks855
Rasch
Rasch
Posts: 6874
Joined: 19/03-2011 15:19
Location: Trondheim
Contact:

Det går for det samme, men du har igjen et par steg når det gjelder videre forkorting.

For eksempel har vi 33=(3)2=3 fra definisjonen av kvadratrot.

Videre har du +33. Hva blir det?
Image
jannepanne

Aleks855 wrote:Det går for det samme, men du har igjen et par steg når det gjelder videre forkorting.

For eksempel har vi 33=(3)2=3 fra definisjonen av kvadratrot.

Videre har du +33. Hva blir det?
Det blir vell 0 ?
Aleks855
Rasch
Rasch
Posts: 6874
Joined: 19/03-2011 15:19
Location: Trondheim
Contact:

Jepp.
Image
mimmelimmen
Pytagoras
Pytagoras
Posts: 17
Joined: 24/03-2020 14:59

Kristian Saug wrote:Hei,

231=2(3+1)(31)(3+1)=2(3+1)31=2(3+1)2=3+1
Spørsmål:

Jeg skjønner at du gjenkjenner Konjugatsetningen i oppgaven (√3 - 1) (√3 + 1) fordi det er selve formelen

Men hvordan kjenner du den igjen i oppgave
__2__
√3 - 1
Aleks855
Rasch
Rasch
Posts: 6874
Joined: 19/03-2011 15:19
Location: Trondheim
Contact:

Det er ikke at man "gjenkjenner" konjugatsetninga i dette tilfellet. Det er at man innfører konjugatet slik at man KAN bruke konjugatsetninga.

Vi blir veldig enkelt kvitt kvadratrota i nevner hvis vi ganger uttrykket med sin konjugerte. Men vi må huske å gange den inn i både teller og nevner.
Image
mimmelimmen
Pytagoras
Pytagoras
Posts: 17
Joined: 24/03-2020 14:59

Aleks855 wrote:Det er ikke at man "gjenkjenner" konjugatsetninga i dette tilfellet. Det er at man innfører konjugatet slik at man KAN bruke konjugatsetninga.

Vi blir veldig enkelt kvitt kvadratrota i nevner hvis vi ganger uttrykket med sin konjugerte. Men vi må huske å gange den inn i både teller og nevner.
Den ser jeg. Men hvorfor multipliserer du med (√3 + 1) og ikke med (√3 - 1) som er nevneren

Er det fordi du vil beholde fortegnene i den opprinnelige nevneren?
Aleks855
Rasch
Rasch
Posts: 6874
Joined: 19/03-2011 15:19
Location: Trondheim
Contact:

Det er fordi hvis vi ganger sammen (31) med sin konjugerte, så får vi et lettere uttrykk å jobbe med, enn hvis vi ganga det med seg selv.

Prøv begge deler og se hva som skjer.
Image
mimmelimmen
Pytagoras
Pytagoras
Posts: 17
Joined: 24/03-2020 14:59

Hei! jeg regnet ut, skriv nevner uten kvadratrot:

_√2_
...√6

_√2 * √6_
√2 * √6

_√12_
...6


Men fasit sier

_√3_
...3
Mattebruker

26 = 223 = 13 =1333 = 33
SveinR
Abel
Abel
Posts: 656
Joined: 22/05-2018 22:12

I tillegg kan vi komme dit fra ditt sluttsvar også:
126=436=436=236=33
Post Reply