Abelsk julenøtt

Her kan brukere av forum utfordre hverandre med morsomme oppgaver og nøtter man ønsker å dele med andre. Dette er altså ikke et sted for desperate skrik om hjelp, de kan man poste i de andre forumene, men et sted for problemløsing på tvers av trinn og fag.

Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Post Reply
Gustav
Tyrann
Tyrann
Posts: 4563
Joined: 12/12-2008 12:44

Gitt en uendelig mengde linjer (ln) definert fra n4y+1n2+1x+n=0 for n=0,±1,±2,.... Hvor mange linjer skjærer alle andre linjer?
Mattebruker
Weierstrass
Weierstrass
Posts: 498
Joined: 26/02-2021 21:28

n = 0 gir likninga x = 0 ( y - aksen )

n 0 y = - xn4(n2+1) - 1n3
Ser av den allmenne linjelikninga at linjer med same |n|-verdi har same stigningstal, men motsett like konstantledd.
Det betyr at desse linjene er parvis parallelle( inga skjering ). Altså finnast det berre ei linje ( x = 0 ) som kryssar alle dei andre linjene.

Oppfølgar:
Lat a , b og c vere sidene i ein fritt vald trekant.

Vis at ab+c + ba+c + ca+b < 2

Har posta dette problemet i eit tidlegare innlegg, utan at nokon så langt har presentert ei fullgod løysing.
Hint: ( b + c ) > a , ( a + c ) > b samt ( a + b ) > c ( verktøy: trekantulikheita )
Gustav
Tyrann
Tyrann
Posts: 4563
Joined: 12/12-2008 12:44

Mattebruker wrote: 05/12-2021 23:26 n = 0 gir likninga x = 0 ( y - aksen )

n 0 y = - xn4(n2+1) - 1n3
Ser av den allmenne linjelikninga at linjer med same |n|-verdi har same stigningstal, men motsett like konstantledd.
Det betyr at desse linjene er parvis parallelle( inga skjering ). Altså finnast det berre ei linje ( x = 0 ) som kryssar alle dei andre linjene.

Oppfølgar:
Lat a , b og c vere sidene i ein fritt vald trekant.

Vis at ab+c + ba+c + ca+b < 2

Har posta dette problemet i eit tidlegare innlegg, utan at nokon så langt har presentert ei fullgod løysing.
Hint: ( b + c ) > a , ( a + c ) > b samt ( a + b ) > c ( verktøy: trekantulikheita )
Korrekt! Fra siste abelkonkurransen. Syns det var en fin og litt orginal oppgave i årets første runde.

På oppfølgeren,

ab+c=2ab+c+b+c<2aa+b+c anvendt på hvert ledd, oppnås ulikheten.

Oppfølger: Vis at for alle positive a,b,c så er

ab+c + ba+c + ca+b32
Mattebruker
Weierstrass
Weierstrass
Posts: 498
Joined: 26/02-2021 21:28

Heilt korrekt ! Lett match for Gustav . ( Abel-finalen 1993 )

Oppfølgaren din er kjent under namnet Nesbitt's ulikhet og har vore posta tidlegare i dette forumet.
Janhaa
Boltzmann
Boltzmann
Posts: 8552
Joined: 21/08-2006 03:46
Location: Grenland

https://artofproblemsolving.com/wiki/in ... Inequality
Mattebruker wrote: 06/12-2021 07:05
Nesbitt’s inequality


Heilt korrekt ! Lett match for Gustav . ( Abel-finalen 1993 )

Oppfølgaren din er kjent under namnet Nesbitt's ulikhet og har vore posta tidlegare i dette forumet.
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

ρ˙=i[H,ρ]
Janhaa
Boltzmann
Boltzmann
Posts: 8552
Joined: 21/08-2006 03:46
Location: Grenland

Hva med denne geometri jule-nøtta. Mulig den har vært her før!?

E03A1D21-EF12-43EC-8260-C81AFCA30A34.jpeg
E03A1D21-EF12-43EC-8260-C81AFCA30A34.jpeg (808.84 KiB) Viewed 44528 times
En kjegle er delvis fylt med vann. Når kjeglen står med bred- siden ned, er d 8 cm til toppen.
Når den står med spissen ned, er d 2 cm til toppen. Vann-volumet er likt i begge kjeglene.
Bestem kjeglens høyde, h?

Se bilde over.
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

ρ˙=i[H,ρ]
Post Reply