Finne linjen som tangerer sirkelen

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga

Post Reply
Fryzrn
Noether
Noether
Posts: 25
Joined: 25/10-2006 20:19

Hei, jeg vet jeg har gjort denne oppgaven en gang før, og at den ikke er så veldig vanskelig. Må likevel ha litt hjelp da jeg har litt liten tid. Takk!

Sirkelen er gitt ved: x[sup]2[/sup]+(y-3)[sup]2[/sup]

linjen l er gitt ved: x = t og y = k+2t.

Bestem k slik at linjen tangerer sirkelen.
Janhaa
Boltzmann
Boltzmann
Posts: 8552
Joined: 21/08-2006 03:46
Location: Grenland

Fryzrn wrote:Hei, jeg vet jeg har gjort denne oppgaven en gang før, og at den ikke er så veldig vanskelig. Må likevel ha litt hjelp da jeg har litt liten tid. Takk!

Sirkelen er gitt ved: x[sup]2[/sup]+(y-3)[sup]2[/sup] = 25

linjen l er gitt ved: x = t og y = k+2t.

Bestem k slik at linjen tangerer sirkelen.

Mener du denne...

http://www.matematikk.net/ressurser/mat ... hp?t=10177
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Fryzrn
Noether
Noether
Posts: 25
Joined: 25/10-2006 20:19

Ser man det! Hvordan løser man den uten derivasjon? Altså sette inn t i sirkellikningen osv.. ?

Takk for svar
Janhaa
Boltzmann
Boltzmann
Posts: 8552
Joined: 21/08-2006 03:46
Location: Grenland

Fryzrn wrote:Ser man det! Hvordan løser man den uten derivasjon? Altså sette inn t i sirkellikningen osv.. ?

Takk for svar

NJa, har jeg tenkt null og niks på.
Men hva med å benytte seg av at radiusvektor til sirkel er vinkelrett
på tangentlinja (y = k + 2x)....
Prøv litt og sjekk og d funker. Kan godt se på den senere, har ikke tid nå...
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Fryzrn
Noether
Noether
Posts: 25
Joined: 25/10-2006 20:19

hmmZ
Last edited by Fryzrn on 27/11-2006 16:51, edited 1 time in total.
sEirik
Guru
Guru
Posts: 1551
Joined: 12/06-2006 21:30
Location: Oslo

Sånn her løste jeg den med vektorer, rett før Janhaa løste den for meg (fordi jeg håpte det ville finnes en bedre metode å gjøre den på :P)

Retningsvektor for linja: [tex]\v r = \[1, 2\][/tex]

Så finner vi y gitt ved x av sirkelen (Med litt algebraisk manipulasjon):

[tex]y = 3 \pm sqrt{25 - x^2}[/tex]

Vi sier at punktet P er punktet der linja tangerer sirkelen. Gitt ved x, vil dette punktet være:

[tex]P = (x,\ 3 \pm sqrt{25 - x^2})[/tex]

Sentrum i sirkelen er [tex]S = (0, 3)[/tex],

Da får vi at

[tex]\v{SP} = \[x,\ \pm sqrt{25 - x^2}\][/tex]

Vi vet at [tex]\v{SP}[/tex] står vinkelrett på [tex]\v r[/tex]

Det medfører

[tex]\v{SP} \cdot \v r = 0[/tex]

[tex]\[x,\ \pm sqrt{25 - x^2}\] \cdot \[1, 2\] = 0[/tex]

[tex]x \pm 2 sqrt{25 - x^2} = 0[/tex]

[tex]\pm 2 sqrt{25 - x^2} = - x[/tex]

Kvadrerer begge sider.

[tex]4(25 - x^2) = x^2[/tex]

[tex]x^2 = 20[/tex]

[tex]x = \pm 2 sqrt{5}[/tex]

Så er det å finne y-verdier som passer for dette. Vi får [tex]y = 3 \pm sqrt{5}[/tex]. Så må vi prøve de mulige kombinasjonene for å finne riktig y til riktig x. Det vi får, er:

[tex]P = (\pm 2 sqrt{5},\ 3 \mp sqrt{5})[/tex]

[tex]3 \mp sqrt 5 = \pm 4 sqrt 5 + k[/tex]

[tex]k = 3 \mp sqrt 5 \mp 4sqrt{5}[/tex]

[tex]k = 3 - 5 sqrt 5 \vee k = 3 + 5 sqrt 5[/tex]
Post Reply