[symbol:integral] (1-x)[sup]2[/sup] e[sup]-x[/sup] x[1,0]
fasit:1-(2/e)
har prøve imorgen...hjelp!
Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga
russ07 wrote:[symbol:integral] (1-x)[sup]2[/sup] e[sup]-x[/sup] x[1,0]
fasit:1-(2/e)
[tex]I=\int_0^1 (1-x)^2e^{-x}dx[/tex]
bruk delvis integrasjon:
[tex]I=\int_0^1 (1-x)^2e^{-x}dx=[/tex][tex]-e^{-x}(x^2+1)|_0^1[/tex]
[tex]I=-e^{-1}\cdot (1+1)+1=1-{2\over e}[/tex]
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.
[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Marie Curie, kjemiker og fysiker.
[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
skal det ikke være dobbel intgrasjon her..eller???Janhaa wrote:russ07 wrote:[symbol:integral] (1-x)[sup]2[/sup] e[sup]-x[/sup] x[1,0]
fasit:1-(2/e)
[tex]I=\int_0^1 (1-x)^2e^{-x}dx[/tex]
bruk delvis integrasjon:
[tex]I=\int_0^1 (1-x)^2e^{-x}dx=[/tex][tex]-e^{-x}(x^2+1)|_0^1[/tex]
[tex]I=-e^{-1}\cdot (1+1)+1=1-{2\over e}[/tex]

Just Remember u have afriend, when tRoubles seem like never end...!!