skjæring

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Post Reply
maximus_10
Noether
Noether
Posts: 44
Joined: 04/12-2006 15:19

Skal finne skjæringspunktet mellom:
r1(t)=[t,2t^2] og
r2(s)=[ [symbol:rot] (3/2)cos s, [symbol:rot] (3/2)sin s]

Setter :

t= [symbol:rot] (3/2)cos s og 2t^2= [symbol:rot] (3/2)sin s

Så kommer jeg ikke videre..
maximus_10
Noether
Noether
Posts: 44
Joined: 04/12-2006 15:19

Anyone??
Magnus
Guru
Guru
Posts: 2286
Joined: 01/11-2004 23:26
Location: Trondheim

Et tips kan jo være å kvadrerene den første der og multiplisere den med 2, og så sette de to lik hverandre og bruke tangens.
Janhaa
Boltzmann
Boltzmann
Posts: 8552
Joined: 21/08-2006 03:46
Location: Grenland

maximus_10 wrote:Skal finne skjæringspunktet mellom:
r1(t)=[t,2t^2] (I) og
r2(s)=[ [symbol:rot] (3/2)cos s, [symbol:rot] (3/2)sin s] (II)
Setter :
t= [symbol:rot] (3/2)cos s og 2t^2= [symbol:rot] (3/2)sin s
Så kommer jeg ikke videre..
setter r[sub]1[/sub](t) = r[sub]2[/sub] (t)

[tex]t=(sqrt{1.5})\cdot cos(s)\;(I)[/tex]

[tex]\;2t^2=(sqrt{1.5})\cdot sin(s)\;(II)[/tex]

og setter videre (I) inn i (II) som gir:

[tex]2(1.5)\cdot cos^2(s)=sqrt{1.5}sin(s)[/tex]

rydder opp etc:

[tex]3sin^2(s)+(sqrt{1.5})sin(s)-3=0[/tex]

altså 2. gradslikning i sin(s):

sin(s) [symbol:tilnaermet] 0.817

s [symbol:tilnaermet] 0.96 + k*2 [symbol:pi]
eller s [symbol:tilnaermet] 2.19 + k*2 [symbol:pi], for k = 0

s [symbol:tilnaermet] 0.96 eller s [symbol:tilnaermet] 2.19

Som gir følgende t-verdier:

s [symbol:tilnaermet] 0.96 gir t [symbol:tilnaermet] 0.71
eller s [symbol:tilnaermet] 2.19 gir t [symbol:tilnaermet] -0.71

Til slutt blir skjæringspunktet mellom r[sub]1[/sub](t) og r[sub]2[/sub](t)

(x, y) = (0.71, 1.01)
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
maximus_10
Noether
Noether
Posts: 44
Joined: 04/12-2006 15:19

Ok..jeg skjønner hva du gjør.
Men så kommer det noe her som trenger forklaring..

Finne skjæringspunktet mellom kurvene:
r1(t)=[sin(t),sin^2(t)] og
r2(s)=[cos^2(s),sin^2(s)]

På forhånd takk..
Janhaa
Boltzmann
Boltzmann
Posts: 8552
Joined: 21/08-2006 03:46
Location: Grenland

maximus_10 wrote:Ok..jeg skjønner hva du gjør.
Men så kommer det noe her som trenger forklaring..
Finne skjæringspunktet mellom kurvene:
r1(t)=[sin(t),sin^2(t)] og
r2(s)=[cos^2(s),sin^2(s)]
På forhånd takk..
Her gjelder samme prosedyre, anbefaler deg å regne ut siste del selv.

[tex]r_1=r_2\;[/tex]

[tex](i)\;sin(t)=cos^2(s)\;og[/tex][tex]\;sin^2(t)=sin^2(s)\;(ii)[/tex]

setter (i) inn i (ii):

(cos[sup]2[/sup](s))[sup]2[/sup] = sin[sup]2[/sup](s) , som gir:

cos[sup]4[/sup](s) = 1 - cos[sup]2[/sup](s)

cos[sup]4[/sup](s) + cos[sup]2[/sup](s) - 1 = 0

sett u = cos[sup]2[/sup](s), dvs:

u[sup]2[/sup] + u - 1 = 0

nå har du et enklere utgangspunkt...
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
maximus_10
Noether
Noether
Posts: 44
Joined: 04/12-2006 15:19

u^2+u-1=0
Dvs:
cos^2(s)=(-1+ [symbol:rot] 5)/2 gir: cos(s)= [symbol:plussminus] [symbol:rot] (-1+ [symbol:rot] 5)/2

s1=0,786
s2=-0,786
s3= [symbol:pi] -(-0,786)=5,5

Så settes disse inn i parameteren..
Er det riktig?
Janhaa
Boltzmann
Boltzmann
Posts: 8552
Joined: 21/08-2006 03:46
Location: Grenland

maximus_10 wrote:u^2+u-1=0
Dvs:
cos^2(s)=(-1+ [symbol:rot] 5)/2 gir: cos(s)= [symbol:plussminus] [symbol:rot] (-1+ [symbol:rot] 5)/2
s1=0,786
s2=-0,786
s3= [symbol:pi] -(-0,786)=5,5
Så settes disse inn i parameteren..
Er det riktig?
Ikke helt;

[tex]cos^2(s)={-1\pm sqrt{5}\over 2}[/tex]

cos[sup]2[/sup](s) > 0, gir cos[sup]2[/sup](s) = 0,618

Bruker cos(s) > 0, og cos(s) = 0,786

s[sub]1[/sub] = 0,666 + k*2 [symbol:pi] og s[sub]2[/sub] = 5,617 + k*2 [symbol:pi]

for k = 0 gir dette skjæringspunktet (x, y) [symbol:tilnaermet] (0.62, 0.38)
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Post Reply