Vektoroppg. 2MX

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga

Post Reply
Jippi
Cantor
Cantor
Posts: 147
Joined: 13/12-2006 15:16

Gitt punktene A(3,5), B(4,-1) og C(a+1,a). Bestem a slik at
1) Vektor AB er vinkelrett med vektor BC. (sånn "rart" tegn mellom vektorene i oppgaveteksten, tror det betyr vinkelrett)

2) Vektor BC med to streker rundt (skalar verdi..?) = Kvadratrotem av 26.

3) Vektor BC med to streker rundt (skalar verdi..?) blir kortest mulig.

Vær vennlig å bruk formler og forklar godt. (har akkurat begynt med vektorkapitlet)

Fasit.
1)a=-1,8 2) a= 4 v a=-2 3) a=1

Har prøvd og prøvd. SLITER fælt

Tusen takk for hjelp. som sagt: forklar :)
daofeishi
Tyrann
Tyrann
Posts: 1486
Joined: 13/06-2006 02:00
Location: Cambridge, Massachusetts, USA

1) To vektorer er vinkelrette når skalarproduktet deres er 0.

2) Konstruer vektoren BC. Lengden av BC er gitt ved det pytagoreiske teorem. Løs likningen som oppstår for a.

3) Du kan tenke deg at alle mulige verdier for c tegner en linje i x-y-planet. Denne linjen parametriseres som

[tex]\vec {r_c} = \left( \begin{array}{c} 1 \\ 0 \end{array}\right) + a\left( \begin{array}{c} 1 \\ 1 \end{array} \right) [/tex]

med a som parameter.

Du kan nå konstruere den generelle vektoren BC, og du vil finne at den er kortest når BC står vinkelrett på [tex] \vec{r_c}[/tex]. (Bruk skalarproduktet her)

Var dette til hjelp?
Lars1
Fibonacci
Fibonacci
Posts: 3
Joined: 09/12-2006 16:58

Sliter med ei lignande oppgåve.

B: (4,-1,1) og C: (a-2, a+1, a). Bestem a slik at |BC| blir kortest mulig.

Skjønte ikkje kva daofeishi meinte med det han svarte på 3 så forklar gjerne grundig :)
sEirik
Guru
Guru
Posts: 1551
Joined: 12/06-2006 21:30
Location: Oslo

Igjen briljerer han med matrisene sine :P , i dette tilfellet kolonnevektorer, men

[tex]\vec {r_c} = \left( \begin{array}{c} 1 \\ 0 \end{array}\right) + a\left( \begin{array}{c} 1 \\ 1 \end{array} \right) [/tex]

betyr på norsk-vdg-språk

[tex]x = 1 + t[/tex] og [tex]y = t[/tex] med t som parameter. I hvert fall sånn jeg tolker det.
Post Reply