Jeg lurer på om noen kan forklare meg steg for steg hvordan dette skal gjøres...
y=ln(sin^2x) Kjerneregelen : y=g(u), y'=g'(u)*u'
g'(u)= (sin^2x)^(1-1) = (sin^2x)^0 = 1
u' = (sin^2x)' = (1-cos2x/2)' Kvotientregelen : y=u/v, y'=u'v-uv'/v^2
u= 1-cos2x u'= 0-(-sin2x) = sin2x
v=2 v'=0
y'=sin2x*2-(1-sin2x)*0/4 = sin2x/2 Trodde jeg...
Kan noen hjelpe?
Deriver y=ln(sin^2x)
Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa
[tex]y = \ln{(\sin^2{x})}[/tex]
[tex]u = \sin{x}[/tex]
[tex]y^,(u) = \frac{1}{u^2} \ \cdot \ (u^2)^,[/tex]
[tex](u^2)^, = 2u \ \cdot \ u^,[/tex]
[tex]y^,(u) = \frac{1}{u^2} \ \cdot \ 2u \ \cdot \ u^,[/tex]
[tex]u^, = \cos{x}[/tex]
[tex]y^, = 2\cot{x}[/tex]
[tex]u = \sin{x}[/tex]
[tex]y^,(u) = \frac{1}{u^2} \ \cdot \ (u^2)^,[/tex]
[tex](u^2)^, = 2u \ \cdot \ u^,[/tex]
[tex]y^,(u) = \frac{1}{u^2} \ \cdot \ 2u \ \cdot \ u^,[/tex]
[tex]u^, = \cos{x}[/tex]
[tex]y^, = 2\cot{x}[/tex]
P E N Tzell wrote:[tex]y = \ln{(\sin^2{x})}[/tex]
[tex]u = \sin{x}[/tex]
[tex]y^,(u) = \frac{1}{u^2} \ \cdot \ (u^2)^,[/tex]
[tex](u^2)^, = 2u \ \cdot \ u^,[/tex]
[tex]y^,(u) = \frac{1}{u^2} \ \cdot \ 2u \ \cdot \ u^,[/tex]
[tex]u^, = \cos{x}[/tex]
[tex]y^, = 2\cot{x}[/tex]

The square root of Chuck Norris is pain. Do not try to square Chuck Norris, the result is death.
http://www.youtube.com/watch?v=GzVSXEu0bqI - Tom Lehrer
http://www.youtube.com/watch?v=GzVSXEu0bqI - Tom Lehrer