Hei. Kan noen vise meg fremgangsmåten for å løse følgende ubestemt integral?
[tex]\int {\frac{1}{{1 + \sqrt x }}} dx\[/tex]
Ubestemt integral
Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga
[tex]u = 1+\sqrt{x} \ , \ \frac{\rm{d}u}{\rm{d}x} = \frac{1}{2\sqrt{x}}[/tex]
[tex]2(u-1)\rm{d}u = \rm{d}x[/tex]
[tex]\int \frac{2u-2}{u}\rm{d}u = \int 2 - \frac{2}{u}\rm{d}u = 2u - 2\ln{|u|} C = 2(\sqrt{x} - \ln{(\sqrt{x}+1)}) + C[/tex]
[tex]2(u-1)\rm{d}u = \rm{d}x[/tex]
[tex]\int \frac{2u-2}{u}\rm{d}u = \int 2 - \frac{2}{u}\rm{d}u = 2u - 2\ln{|u|} C = 2(\sqrt{x} - \ln{(\sqrt{x}+1)}) + C[/tex]