Sannsynlighet, 2MX!

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk for videregående skole og oppover på høyskolenivå. Alle som føler trangen er velkommen til å svare.

Moderators: Aleks855, Gustav, Nebuchadnezzar, Janhaa, DennisChristensen, Emilga

Post Reply
jchrjc
Cayley
Cayley
Posts: 66
Joined: 27/05-2007 23:41

Jeg skal ha prøve i sannsynlighet på tirsdag (kap. 9 i 2MX boken) og lurte på et par ting..

1. Hvordan vet man hvilkensannsynlighetsmodell man skal bruke?
Hadde vært flott hvis noen kunne sette opp i stikkord når man vet man skal bruke; binomisk fordeling, hypergeometrisk fordelig og betinget sannsynlighet.

2. Jeg har litt problemer med denne oppgaven:
På en skole er det 60% jenter og 40% gutter. Blant jentene er det 8% som har hatt kyssesyke. Blant guttene er det 6% som har hatt kyssesyke. 12% av alle elevene på skolen har hatt mer enn 10 dagers fravær. Blant dem som har hatt kyssesyke, er det 60% som har hatt mer enn 10 dagers fravær.
a) Finn sannsynligheten for at en tilfeldig valgt elev har hatt kyssesyke.
b) Finn sannsynligheten for at en elev har hatt kyssesyke når vi vet at leven har hatt mer enn 10 dagers fravær.

3.
a) Hvor mange sekssifrede tall er sammensatt av bare forskjellige siffer?
b) Hvor mange sekssifrede tall har minst to like siffer?

Håper det er noen smarte hoder som kan hjelpe meg med svar på disse spørsmålene :wink:
(Kom også opp i 2MX eksamen 4. Juni)

Og helt til slutt:
Hva kan man gjøre for å bli bedre i sannsynlighets regning?
Syns det er litt vanskelig å komme inn i tankegangen..
Noen som har noen tips?? :D
Last edited by jchrjc on 28/05-2007 13:11, edited 1 time in total.
Janhaa
Boltzmann
Boltzmann
Posts: 8552
Joined: 21/08-2006 03:46
Location: Grenland

kan hjelpe deg med 3)
a)
husk 1. siffer ikke kan være null
[tex]P_1=9\cdot 9\cdot 8 \cdot 7 \cdot 6 \cdot 5=10P6\,-\,9P5=\frac{10!}{4!}\,-\,\frac{9!}{4!}=136080[/tex]

b)
[tex]P_2=10^6\,-\,10^5\,-\,P_1=763920[/tex]
La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.

[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
jchrjc
Cayley
Cayley
Posts: 66
Joined: 27/05-2007 23:41

Takk:)
Men skjønnte ikke helt ressonementet på oppgave b..?

Er det noen som klarer de andre også?=))
jchrjc
Cayley
Cayley
Posts: 66
Joined: 27/05-2007 23:41

Er dette riktig:
- I en binomisk sannsynlighet er sannsynligheten konstant, og uavhengig
- I en hypergeometrisk sannsynlighet forandres sannsynligheten og er ikke uavhengig..

?
zell
Guru
Guru
Posts: 1777
Joined: 09/02-2007 15:46
Location: Trondheim

Oppgave 2:

G = Gutt
J = Jente
K = Kyssesyke

[tex]P(G) = 0.40 \\ P(K|G) = 0.06 \\ P(\overline{K}|G) = 0.94[/tex]
[tex]P(J) = 0.60 \\ P(K|J) = 0.08 \\ P(\overline{K}|J) = 0.92[/tex]

a)

Produktsetningen:

[tex]P(G\cap K) = P(G) \ \cdot \ P(K|G) = 0.40 \ \cdot \ 0.06 = 0.024[/tex]

[tex]P(J\cap K) = P(J) \ \cdot \ P(K|J) = 0.60 \ \cdot \ 0.08 = 0.048[/tex]

[tex]P(K) = P(G\cap K) + P(J\cap K) = 0.024 + 0.048 = 0.072[/tex]

[tex]\text{SVAR: Det er 7.2\percent sannsynlighet for at en tilfeldig valgt elev har hatt kyssesyke}[/tex]

b)

10F = 10 dager fravær

[tex]P(10F) = 0.12[/tex]

[tex]P(\overline{10F}) = 1 - P(10F) = 1 - 0.12 = 0.88[/tex]

[tex]P(10F|K) = 0.60 \\ P(\overline{10F}|K) = 0.40[/tex]

Vi skal finne: [tex]P(K|10F)[/tex]

Bruker Bayes' setning:

[tex]P(K|10F) = \frac{P(K) \ \cdot \ P(10F|K)}{P(10F} = \frac{0.072 \ \cdot \ 0.60}{0.12} = 0.36[/tex]

[tex]\text{SVAR: Det er 36\percent sannsynlighet for at en elev som har hatt kyssesyke har hat mer enn 10 dager fravær.}[/tex]
jchrjc
Cayley
Cayley
Posts: 66
Joined: 27/05-2007 23:41

Takk :D
Post Reply