Tyngdepunkt av flateareal...

Her kan du stille spørsmål vedrørende problemer og oppgaver i matematikk på høyskolenivå. Alle som har kunnskapen er velkommen med et svar. Men, ikke forvent at admin i matematikk.net er spesielt aktive her.

Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa

Post Reply
meCarnival
Riemann
Riemann
Posts: 1686
Joined: 07/09-2007 19:12
Location: Trondheim

Oppgave lyder:
Image

Jeg har ikke hatt om dette i forelesningene men leser i boka og prøver å lære selv før forelesningene så jeg lærer av feil.
Problemet her er at boka har kun et eksempel og da er det gitt tre punkt i et koordinatsystem. Som ike ligner på denne oppgaven.

Vi har fått utdelt et formelhefte vi bruker rimelig ofte og finner kun denne en regel om tyngdepunkt:
Image

Sett det er andre formler i boka også men jeg antar vi skal bruke formelhefte siden foreleseren bruker det hele tiden..
Er det mulig å løse oppgave mhp den overstående formelen?
Noen start tips hadde vært kos :D...



meC...
Høgskolen i Sør-Trøndelag, Logistikkingeniør
Ingeniørmatematikk IV
arildno
Abel
Abel
Posts: 684
Joined: 17/03-2007 17:19

Vel, masse-senterets x-koordinat er den masse-vektede gjennomsnittsposisjonen.

Tenk deg n punktmasser, med total-masse M, og posisjoner xi,i=1,...n med tilhørende masser mi

Da er selvfølgelig masse-midtpunktet gitt som:
x=m1x1+m2x2++++mnxnM

Helt tilsvarende gjelder for en kontinuerlig fordeling, der hvert punkt har massen dm=ρdA, der ρ er (den lokale) massetettheten

Vi har derfor, gitt konstant massetetthet:
x=1Mxdm=1ρAxρdA=1AxdA

Helt tilsvarende gjelder for y-koordinaten.
Integraltegnet angir i dette tilfelle et dobbeltintegral.
meCarnival
Riemann
Riemann
Posts: 1686
Joined: 07/09-2007 19:12
Location: Trondheim

Så hvis jeg forstår riktig nå er at jeg ikke kan bruke den regelen (som er den eneste i formelheftet om tyngdepunkt til flateareal) så kommer jeg til å regne ut med kontinuerlig fordeling som du har skrevet om under.
- Det er fordi jeg ikke har noen massevekter oppgitt i oppgaven min...
Høgskolen i Sør-Trøndelag, Logistikkingeniør
Ingeniørmatematikk IV
arildno
Abel
Abel
Posts: 684
Joined: 17/03-2007 17:19

meCarnival wrote:Så hvis jeg forstår riktig nå er at jeg ikke kan bruke den regelen (som er den eneste i formelheftet om tyngdepunkt til flateareal) så kommer jeg til å regne ut med kontinuerlig fordeling som du har skrevet om under.
- Det er fordi jeg ikke har noen massevekter oppgitt i oppgaven min...
Joda, iogmed at pr. definisjon (let den frem!!), så har vi:
MxxdA, osv
(Du har skrevet feil tror jeg, med Mx og My)
meCarnival
Riemann
Riemann
Posts: 1686
Joined: 07/09-2007 19:12
Location: Trondheim

Hvor tror du jeg har skrevet feil hen?

Bare få det ut av verden og glor på definisjon i boka nå, så får se om jeg blir noe klokere :D
Høgskolen i Sør-Trøndelag, Logistikkingeniør
Ingeniørmatematikk IV
fish
von Neumann
von Neumann
Posts: 527
Joined: 09/11-2006 12:02

Jeg tror ikke du har skrevet feil. Det er nok relativt vanlig at

Mx betyr "statistk moment mhp x-aksen og tilsvarende for My, og da er formlene for tyngdepunktet helt ok.
meCarnival
Riemann
Riemann
Posts: 1686
Joined: 07/09-2007 19:12
Location: Trondheim

Ok, kommet et stykke på vei...

EDIT:
Woho :D
Høgskolen i Sør-Trøndelag, Logistikkingeniør
Ingeniørmatematikk IV
meCarnival
Riemann
Riemann
Posts: 1686
Joined: 07/09-2007 19:12
Location: Trondheim

Nå har jeg sett litt på c og vet ikke helt hvordan jeg skal angripe den...!


Kniv, øks? Eller noen gode forslag?

meC
Høgskolen i Sør-Trøndelag, Logistikkingeniør
Ingeniørmatematikk IV
arildno
Abel
Abel
Posts: 684
Joined: 17/03-2007 17:19

La (x,y) være et punkt i flaten din.
Da gis det statiske moment om linja x=-1 fra dette punktet som massen dm til punktet ganget med avstanden punktet har til linja, nemlig x-(-1)=x+1.
Dermed blir totalen:
(x+1)ρdxdy=xρdxdy+ρdxdy
Siden tettheten er konstant, sett den lik 1, og du gjenkjenner greit integralene fra tidligere regnete oppgaver.
Post Reply