[tex]I=\int csch(x)dx=2\int\frac{1}{e^x-e^{-x}}dx \\ x=\ln\,u \Leftrightarrow u=e^x \\ dx=\frac1u du \\ I=2\int \frac{1}{u-\frac1u}\cdot \frac1u du = 2\int \frac{du}{u^2-1} \\ u=\cos\,v \Leftrightarrow v=\arccos\,u \\ du=-\sin\,v\,dv \\ I=-2\int \frac{\sin\,v}{\cos^2v-1}dv=-2\int \frac{1}{sin\,v}dv[/tex]
- Har jeg regnet riktig fram til nå?
- Her sitter jeg fast. Kan noen gi meg en dytt?
Integral
Moderators: Vektormannen, espen180, Aleks855, Solar Plexsus, Gustav, Nebuchadnezzar, Janhaa
-
- Over-Guru
- Posts: 1686
- Joined: 03/10-2005 12:09
Bruk heller delbrøkoppspalting for du skal beregne integralet
[tex]\int \: \frac{2}{u^2 \: - \: 1} \, du \; = \; \int \frac{1}{u \: - \: 1} \; - \; \frac{1}{u \: + \: 1} \, du \;=\; \ln|u \: - \: 1| \; - \; \ln|u \: + \: 1| \: + \: C \;=\; \ln \, |\,\frac{u \: - \: 1}{u \: + \: 1}\,| \: + \: C \;=\; \ln \, |\, \frac{e^x \: - \: 1}{e^x \: + \: 1}\,| \: + \: C.[/tex]
[tex]\int \: \frac{2}{u^2 \: - \: 1} \, du \; = \; \int \frac{1}{u \: - \: 1} \; - \; \frac{1}{u \: + \: 1} \, du \;=\; \ln|u \: - \: 1| \; - \; \ln|u \: + \: 1| \: + \: C \;=\; \ln \, |\,\frac{u \: - \: 1}{u \: + \: 1}\,| \: + \: C \;=\; \ln \, |\, \frac{e^x \: - \: 1}{e^x \: + \: 1}\,| \: + \: C.[/tex]
Ok, takk for svar. 

[tex]I=-2\tex arctanh(e^x) + C[/tex]espen180 wrote:[tex]I=\int csch(x)dx=2\int\frac{1}{e^x-e^{-x}}dx [/tex]

La verken mennesker eller hendelser ta livsmotet fra deg.
Marie Curie, kjemiker og fysiker.
[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Marie Curie, kjemiker og fysiker.
[tex]\large\dot \rho = -\frac{i}{\hbar}[H,\rho][/tex]
Jeg satte den inn i mathematica online integrator og fikk [tex]I=\ln\left(tanh\left(\frac{x}{2}\right)\right)+C[/tex]