Page 1 of 1

Difflikning

Posted: 02/12-2009 10:33
by Morpho
Finn den generelle løsningnen til difflikningen

y'/4x+y=2

X er ikke lik 0

noen som kan hjelpe med utrekning på denne ?

Posted: 02/12-2009 11:00
by Vishvish
Hvis du separerer ligningen får du
dy/(2-y) = 4x dx
Så er det bare å integrere på begge sider og løse for y

Posted: 02/12-2009 11:09
by Andreas345
Alternativ måte å løse den på:

[tex]\frac{y\prime}{4x}+y=2[/tex]

[tex]y\prime+4x\cdot y=8x[/tex]

Dette er en førsteordens lineær differensiallikning.

Finner den integrerende faktoren:

[tex]I=e^{\int 4x \ dx} \ =e^{2x^2}[/tex]

[tex]y\prime\cdot e^{2x^2}+4x\cdot y\cdot e^{2x^2}=8x\cdot e^{2x^2}[/tex]

[tex]\left (y \cdot e^{2x^2} \right )^{\prime}=8x\cdot e^{2x^2}[/tex]

[tex]y\cdot e^{2x^2} =\int 8x\cdot e^{2x^2} \ dx[/tex]