Får fortsatt feil, men det er kanskje ikke lurt og gjøre matte så sent på kvelden.
[tex]{\lim }\limits_{x \to 2} \, \, \frac{{\sqrt {x + 7} - 3}}{{x - 2}} [/tex]
[tex]{\lim }\limits_{x \to 2} \, \, \frac{{\sqrt {x + 7} - 3}}{{x - 2}} \cdot \frac{{\sqrt {x + 7} - 3}}{{\sqrt {x + 7} - 3}} [/tex]
[tex] {\lim }\limits_{x \to 2} \, \, \frac{{x + 16 - 6\sqrt {x + 7} }}{{x\sqrt {x + 7} - 3x - 2\sqrt {x + 7} + 6}} [/tex]
[tex]{\lim }\limits_{x \to 2} \, \, \frac{{3 + 16 - 6 \cdot 3}}{{2 \cdot 3 - 3 \cdot 2 - 2 \cdot 3 + 6}} [/tex]
[tex]{\lim }\limits_{x \to 2} \, \, \frac{1}{0}[/tex]
EDIT: Da gikk den oppgaven opp
[tex]{\lim }\limits_{x \to 2} \, \, \frac{{\sqrt {x + 7} - 3}}{{x - 2}} [/tex]
[tex]{\lim }\limits_{x \to 2} \, \, \frac{{\sqrt {x + 7} - 3}}{{x - 2}} \cdot \frac{{\sqrt {x + 7} + 3}}{{\sqrt {x + 7} + 3}} [/tex]
[tex]{\lim }\limits_{x \to 2} \, \, \frac{{{{\sqrt {x + 7} }^2} - {3^2}}}{{\left( {x - 2} \right)\left( {\sqrt {x + 7} + 3} \right)}} [/tex]
[tex]{\lim }\limits_{x \to 2} \, \, \frac{{x + 7 - 9}}{{\left( {x - 2} \right)\left( {\sqrt {x + 7} + 3} \right)}} [/tex]
[tex]{\lim }\limits_{x \to 2} \, \, \frac{{x - 2}}{{\left( {x - 2} \right)\left( {\sqrt {x + 7} + 3} \right)}} [/tex]
[tex]{\lim }\limits_{x \to 2} \, \, \frac{1}{{\sqrt {x + 7} + 3}} [/tex]
[tex]{\lim }\limits_{x \to 2} \, \, \frac{1}{{\sqrt {2 + 7} + 3}} \, = \, \frac{1}{{\sqrt 9 + 3}} \, = \, \frac{1}{6} \[/tex]
^^